
Industry Survey
Property Graph Schema Work Group

Table of contents
Table of contents​ 1

Introduction​ 3
Participants​ 3
Languages​ 3

Overview​ 4
General concepts​ 4
Types​ 6

ID types (Graph.Features)​ 6
Property value types (Graph.Features)​ 6

Data value constraints​ 6
Graph.Features​ 6

Structural constraints​ 7

General concepts​ 7
Schema management​ 7
Open world vs. closed world assumption​ 8
Unique name assumption​ 8
Multiple Graphs​ 9
Schema reuse​ 9
Schema Change​ 10

Types and Instances​ 11
Types​ 11

Types in Property Graphs​ 12
High-level types​ 12
Edge labels​ 13
Vertex properties​ 13
Edge properties​ 13
Vertex meta-properties​ 14
Meta-edges: edge to vertex​ 14

1

Meta-edges: vertex to edge​ 14
Compare to: hyper-edge​ 15
Compare to: RDF property​ 15

Subtyping​ 15
Type equivalence​ 16
Type Disjointness​ 16
Data types​ 17

Data value constraints​ 17
Key constraints​ 17
Datatype-generic constraints​ 18

UNIQUE​ 18
NOT NULL constraint​ 18
DEFAULT​ 18
General value range constraint​ 18

Numeric-specific Constraints​ 19
Numeric range constraints​ 19
Other numeric constraints​ 19

String-specific Constraints​ 20
Property Pair Constraints​ 20

Multiple values​ 21

Edges (Relationships)​ 21

Source and destination types for Edges (Relationships)​ 22
Structural Constraints​ 23
Cardinality constraints​ 23
Logical Constraints​ 24

Example schemas​ 25
OWL​ 25
Oracle PGX “heterogeneous graph” schema​ 26
Graph processing in SQL Server​ 29
SQL​ 29
Cypher for Apache Spark​ 29

2

Introduction

Participants
Participants in the industry survey are:

●​ Alberto Delazzari (Larus)
●​ Alastair Green (Neo4j)
●​ Victor Lee (TigerGraph)
●​ Petra Selmer (Neo4j)
●​ Dominik Tomaszuk (University of Bialystok)
●​ Oskar van Rest (Oracle)
●​ Mingxi Wu (TigerGraph)
●​ Hannes Voigt (Neo4j)
●​ Joshua Shinavier (Uber)

Simply add your name if you want to contribute.

Languages
The focus is on the following languages:

Property Graph:

●​ Gremlin’s Graph.Features (Josh S)
●​ Cypher for Apache Spark Graph DDL (Petra, Alastair)
●​ GSQL DDL from TigerGraph (Victor)
●​ Oracle PGX “heterogeneous graph” schema
●​ Neo4j/Larus ETL
●​ Gremlin Datastax schema:

https://docs.datastax.com/en/dse/5.1/dse-dev/datastax_enterprise/graph/using/createSc
hemaGremlin.html

●​ Gremlin JanusGraph schema: https://docs.janusgraph.org/0.3.0/schema.html​
Also see http://tinkerpop.apache.org/docs/current/reference/

●​ Graph Processing in SQL Server 2017​
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?vie
w=sql-server-2017

RDF
●​ OWL (Oskar)
●​ SHACL (Hannes, Dominik)
●​ ShEx

3

http://tinkerpop.apache.org/javadocs/3.4.0/core/org/apache/tinkerpop/gremlin/structure/Graph.Features.html
https://docs.datastax.com/en/dse/5.1/dse-dev/datastax_enterprise/graph/using/createSchemaGremlin.html
https://docs.datastax.com/en/dse/5.1/dse-dev/datastax_enterprise/graph/using/createSchemaGremlin.html
https://docs.janusgraph.org/0.3.0/schema.html
http://tinkerpop.apache.org/docs/current/reference/
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-2017

Relational
●​ SQL Schema (Oskar)

XML
●​ XML Schema - W3C XSD (There are several other schema languages for XML) (Peter)

JSON
●​ JSON Schema (Alastair plus small editions by Dominik)

Other
●​ GraphQL: https://facebook.github.io/graphql/draft/#sec-Type-System (Dominik)

Overview
TODO: create table

●​ General concepts
○​ Oskar (Juan backup)

●​ Type hierarchy (subtypes, supertype)
○​ Hannes

●​ Property / data value constraints
○​

●​ Structural constraints
○​ Victor

General concepts
See
https://docs.google.com/presentation/d/1Aa1J0FcxcpVGvwMMoNUzLKWjCMobqW3cXE8PMn
DLy-c/edit?usp=sharing

4

https://facebook.github.io/graphql/draft/#sec-Type-System
https://docs.google.com/presentation/d/1Aa1J0FcxcpVGvwMMoNUzLKWjCMobqW3cXE8PMnDLy-c/edit?usp=sharing
https://docs.google.com/presentation/d/1Aa1J0FcxcpVGvwMMoNUzLKWjCMobqW3cXE8PMnDLy-c/edit?usp=sharing

Types Hierarchy

concept

language

Vertex
sub-/super-typing​
(form of hierarchy)

Edge
sub-/super-typing​
(form of hierarchy)

Graph sub-/super-typing​
(form of hierarchy)

Gremlin’s
Graph.Features

no no no

Cypher for
Apache Spark
Graph DDL

Yes (Mixins, DAG) Yes (Mixins, DAG) ?

TigerGraph
GSQL DDL

no no

Oracle PGX
“heterogeneous
graph” schema

no no no

Neo4j/Larus
ETL

Gremlin
Datastax
schema

no no no

5

Gremlin
JanusGraph
schema

no no no

Graph
Processing in
SQL Server

no no no

OWL (incl. RDF
Schema)

RDFS: yes (arbitrary,
graph)​
OWL: uses RDFS

RDFS: yes (arbitrary,
graph)​
OWL: uses RDFS

RDFS: no​
OWL: no

SHACL As in RDFS As in RDFS As in RDFS

ShEx As in RDFS As in RDFS As in RDFS

SQL User-defined types in relational SQL support sub-/super-typing (single inheritance,
tree)

XML Schema Extension and
restriction (single
inheritance, tree)

no no

JSON Schema no no no

GraphQL Yes, (interface
implementation:
Mixins, DAG; interface
and type extension:
single inheritance, tree)

No Yes (Schema extension:
single inheritance, tree)

Types

ID types (Graph.Features)
●​ Any id
●​ Numeric id
●​ String id
●​ UUID id

Property value types (Graph.Features)

Basic data types:

●​ Boolean
●​ Byte
●​ Double

6

●​ Float
●​ Integer
●​ Long
●​ String

Additional data types:

●​ Array <basic data type>
●​ Map -- arbitrary serializable values
●​ Mixed list -- arbitrary serializable values, not necessarily of the same type
●​ Uniform list -- arbitrary serializable values, all of the same type
●​ Serializable -- any serializable value

Data value constraints

concept

language

Range
constraints

Keys Property pair
constraints

Multiple values

Gremlin’s
Graph.Feat
ures

Cypher for
Apache
Spark
Graph DDL

unsupported

TigerGraph
GSQL DDL

For
numerics

Oracle PGX
“heterogen
eous
graph”
schema

unsupported Keys are unique within a
vertex/edge provider
(e.g. database table or
CSV file)

unsupported unsupported

Neo4j/Laru
s ETL

Gremlin
Datastax
schema

7

Gremlin
JanusGrap
h schema

Graph
Processing
in SQL
Server

For any data
type
(CHECK)

Same as SQL.

OWL (incl.
RDF
Schema)

 HasKey axiom states
that each named
instance of a class is
uniquely identified by a
property

Supported Supported (RDF
lists)

SHACL For
numerics
and strings

unsupported Supported Supported (RDF
lists)

ShEx For
numerics
and strings

unsupported unsupported Supported

SQL For any data
type
(CHECK)

Keys are unique within a
table. Keys may be
composites. Can
auto-generate keys using
AUTO INCREMENT

Supported using
CHECK

Supported (in
SQL:1999
Structured type)

XML
Schema

For
numerics
and strings

Supported supported

JSON
Schema

For
numerics
and strings

Only uniqueItems for
arrays

 supported

GraphQL Unique IDs unsupported supported

Graph.Features
●​ Supported subset of id types (see above) for vertices
●​ Supported subset of id types (see above) for edges
●​ Supported subset of property value types (see above)

Structural constraints
Graph.Features

8

●​ Whether vertex properties are supported
●​ Whether edge properties are supported
●​ Whether vertex meta-properties are supported
●​ Whether vertex multi-properties are supported (i.e. multiple properties for a given vertex

with the same key but different values)

General concepts

Schema management
In OWL, ontologies (i.e. schemas) have a name, which is generally the place where the
ontology document is located in the web.​
OWL ontologies are placed into OWL documents, which are then placed into logical filesystems,
on the web, or in the triplestore.​
OWL makes no distinction between classes and instances, so, any graph instance could be
considered as a schema.

In GSQL, the DDL adopts traditional relational database data independence design paradigm.
That is, the meta data is separate from the binary data. The user pre-defines the metadata
model before loading data. Schema can evolve over time via schema change DDL. The user
can create multiple named graph schemas. Each graph schema has a name, which is a
grouping of a set of vertex types and edge types. Each vertex/edge type has a predefined
schema, which is similar to the table schema in SQL, with the constraint that a vertex type must
have a primary key, and an edge type has a default composite primary key, composed of the
source vertex type’s primary key and the destination vertex type’s primary key (additional key
column can be added based on needs). A vertex type or edge type may belong to more than
one graph schema-- a graph is a namespace holder, where it can serve as view as well as
a physical container.

SHACL uses RDF vocabulary so in can be stored OWL (that can be also serialized in RDF) into
logical filesystems, on the web, or in the triplestore.

In Cypher for Apache Spark, the DDL for the metadata is separate from the instance data.
Through the use of a “graph type”, multiple sets of instance data conforming to a schema (or
graph type) can exist.

Open world vs. closed world assumption
[The closed] world assumption implies that everything we don’t know is false, while the open
world assumption states that everything we don’t know is undefined. [1]​

9

Under the open world assumption, if a statement cannot be proven to be true with current
knowledge, we cannot draw the conclusion that the statement is false.
Languages based on the open world assumption are:

●​ OWL
●​ RDF Schema

Languages based on the closed world assumption are:
●​ Gremlin

○​ Supports closed-world operations such as count() and groupCount().
●​ SQL
●​ Cypher for Apache Spark Graph DDL

○​ as this is bound to an underlying relational model (in Spark), this is closed world
●​ Relax NG

○​ when the document specifies a schema
●​ XML XSD

○​ when the document specifies a schema.
●​ SHACL

○​ allows partial schemas, though (cf. Closed Constraint)
●​ ShEx

○​ allows partial schemes
●​ GraphQL

○​ do not allow partial schemas

[1] https://web.archive.org/web/20090624113015/http://www.betaversion.org/~stefano/linotype/news/91/

Unique name assumption
OWL assumes NO unique names. So, different URLs may correspond to the same entity in the
real world. OWL provides capabilities for relating entities, such as EquivalentClass,
equivalentProperty, sameAs, differentFrom, AllDifferent, distinctMembers.

GSQL namespaces are modeled after those in SQL. A GSQL instance is one world which can
contain several graphs, vertex types, and edge types (analogous to SQL tables). Names of
graphs, vertex types, and edge types are unique within that world. Each object instance has a
unique ID (primary key) within its type, but there is no constraint across types. For example,
each vertex type could have a unique instance with ID = 001.

Cypher for Apache Spark mandates that within a graph type (analogous to a schema), names of
node and edge types are unique.

While Gremlin does not specify whether two vertex IDs may correspond to the same logical
entity, in practice it tends to be assumed that distinct vertices are distinct entities. Properties

10

http://tinkerpop.apache.org/docs/current/reference/#count-step
http://tinkerpop.apache.org/docs/current/reference/#groupcount-step
https://www.w3.org/TR/shacl/#ClosedConstraintComponent
https://web.archive.org/web/20090624113015/http://www.betaversion.org/~stefano/linotype/news/91/

belong exclusively to an individual edge or vertex, and vertices cannot easily be merged based
on logical identity.

Multiple Graphs
GSQL:

●​ A graph is a collection of vertex types and edge types.
●​ A GSQL instance can contain multiple graphs. The graphs can be disjoint or they can

overlap. For example:​
CREATE GRAPH workplace (Person, Business, Job)​
CREATE GRAPH social (Person, Relationship)

●​ MultiGraph model:
○​ Vertex types and edge types can be global or local.
○​ A global type can potentially be included in any graph.
○​ A local type is created within one graph and is only accessible within that graph.
○​ Each graph is also an access control domain.

Schema reuse
Through subtyping, through recursion (XML, JSON), etc.

XMLXSD: can import or include other schems or even parts of schemas. “Import” references declarations
or definitions that are in a different target namespace. “Include” references declarations or definitions that
are (or will be) brought into the target namespace of the schema.
JSON: can import parts of other schemas with “$ref”
OWL: can import entire ontologies in the OWL Header
SHACL: can import entire ontologies (using OWL) and support linking to shapes graphs
RELAX NG: can import entire or partial schema

GSQL does not provide schema declaration by reference. This fits with the SQL-like assumption that
each database is its own world. One can copy the schema definitions statements and reuse them for
another database, of course.

SQL has the LIKE construct for copying tables. It doesn’t reference, it copies.

Languages that allow recursive schema definition:

●​ XML XSD, Document Type Definition (DTD), RELAX NG
●​ JSON

Languages that don’t allow recursive schema definition:

●​ OWL

Cypher for Apache Spark provides for schema reuse. Graphs may refer to an existing graph
type, or define new element, node and edge types, and extend these with mapping information.

11

Schema Change
GSQL:
Modeled after SQL DDL syntax and semantics:

●​ Keywords ADD and DROP: You may ADD a new vertex or edge type or DROP an
existing one.

●​ You may ALTER an existing vertex or edge type by performing ADD or DROP to its
properties.

●​ You can ADD or DROP vertex and edge types to/from a schema.
●​ Schema changes must be wrapped in a SCHEMA_CHANGE JOB.
●​ There are additional subtleties for managing local vs. global types.
●​ Syntax:​

ADD VERTEX vname (PRIMARY_ID id type …) // same syntax as CREATE VERTEX​
ADD UNDIRECTED EDGE ename (FROM vname1…) // same syntax as CREATE UNDIRECTED EDGE​
ADD DIRECTED EDGE ename (FROM vname1…) // same syntax as CREATE DIRECTED EDGE​
ALTER VERTEX|EDGE name ADD (attribute_name type DEFAULT default_value]​
 [, attribute_name type [DEFAULT default_value]]*);​
ALTER VERTEX|EDGE name DROP (attribute_name [, attribute_name]*);​
DROP VERTEX vname [, vname]*; DROP EDGE ename [, ename]*;

Graphs in SQL Server:

●​ Node and edge tables can be altered the same way a relational table is, using the ALTER
TABLE. Users can add or modify user-defined columns, indexes or constraints. However,
altering internal graph columns, like $node_id or $edge_id, will result in an error.

OWL:

●​ TODO Oskar

SQL:

●​ ALTER, ADD, DROP, CREATE

XML:

●​ The schema is itself an XML document, so editing the schema document changes the
schema.

Types and Instances

Types

12

In OWL:
ClassAssertion(:Person :Mary)​
ClassAssertion(:Woman :Mary)

This says that the instance Mary belongs to the class Person as well as the class Woman

In SHACL:
Types are SHACL classes similar to classes know from plain RDF and RDFS (cf. SHACL
Terminology). Instances are assigned to classes, as in plain RDF, by an RDF triples, where the
subject is an instance, the predicate is rdf:type, and the object is a class.
SHACL itself allow to express, so called, shaps, which are a conjunction of constraints that shall
apply to either a type (Class-based Targets) or one or more instances (Node targets).

schema
ex:ExampleShape
 a sh:NodeShape ;
 sh:targetClass ex:Person ;
 sh:property [
 ​ sh:path ex:hasEmail ;
 ​ sh:class ex:Email ;
] .

In GSQL:
​ CREATE VERTEX Person(SSN string PRIMARY_ID, name string)
 CREATE UNDIRECTED EDGE Friendship(FROM Person, TO Person, start datetime)

CREATE DIRECTED EDGE AnyRelation(FROM *, TO *, weight double)
 CREATE GRAPH social (Person, Friendship, AnyRelation)

In XML XSD:

Complex types contain nested elements (of complex or simple type) as sequence
(ordered), all (unordered) or choice (one of N alternatives). Cardinality of the nested elements in
sequence and all is defined by the minOccurs, maxOccurs attributes of the element.

In JSON Schema:
Objects can have nested objects.

In GraphQL:
There are object types.

In Cypher for Apache Spark:

●​ The basic underlying type is called an element type
●​ An element type has a name, and can have 0 or more properties (name-value pairs)

○​ A property may be either mandatory or optional
○​ A property must be defined as having a fixed type (string, integer, etc)

13

https://www.w3.org/TR/shacl/#terminology
https://www.w3.org/TR/shacl/#terminology
https://www.w3.org/TR/shacl/#targetClass
https://www.w3.org/TR/shacl/#targetNode

●​ An element type can inherit from another element type (cycles are not permitted)
●​ Element types form the basis for node and edge types
●​ A node type is formed from an element type
●​ A node type is defined thus: (node_type)
●​ An edge type is comprised of two node types - one for the tail, and one for the head

node - and one element type
●​ An edge type is defined thus:

(tail_node_type)-[ELEMENT_TYPE]->(head_node_type)
●​ Node and edge types inherit all the properties defined by the constituent element types
●​ All the preceding definitions - comprising element, node and edge types - are contained

within a graph type
●​ A graph type is always named; e.g. “finance_department”, and is defined thus:

CREATE GRAPH TYPE finance_department

Types in Property Graphs
In the basic Property Graph data model, every edge and every property has a type (the edge
label or property key), while a given vertex may or may not have a type (the vertex label).
Alternatively, one can think of a graph as supporting a default (empty) vertex label in addition to
explicit vertex labels. Below are a series of diagrams which illustrate various types of property
graph elements in terms of category theory (source: slide show from the Global Graph Summit).

High-level types

Edge labels
Supported by every property graph; an edge connects a vertex with another vertex. In terms of
schema, an edge label connects a vertex label with another vertex label.

14

https://www.slideshare.net/joshsh/a-graph-is-a-graph-is-a-graph-equivalence-transformation-and-composition-of-graph-data-models-129403012/1

Vertex properties
Optionally supported in property graphs. A property is similar to an edge, but it connects a
vertex to a primitive value as opposed to another vertex.

Edge properties
Optionally supported in property graphs. Similar to a vertex property, but the outgoing element is
an edge instead of a vertex.

Vertex meta-properties
Optionally, but not commonly supported in property graphs. A meta-property is a property
outgoing from another property. In terms of Graph.Features, meta-properties can only be
explicitly supported for vertices, not edges.

15

Meta-edges: edge to vertex
Unidirected edges outgoing from other edges were supported in early Titan; see Advanced
Schema.

Meta-edges: vertex to edge
Currently unsupported by any strictly PG database.

Compare to: hyper-edge
See for example GRAKN.AI schemas.

16

http://s3.thinkaurelius.com/docs/titan/0.5.0/advanced-schema.html
http://s3.thinkaurelius.com/docs/titan/0.5.0/advanced-schema.html
https://dev.grakn.ai/docs/schema/overview?source=/docs/general/quickstart&sourceAnchor=the-schema&sourceTitle=Quickstart

Compare to: RDF property

Subtyping
In OWL:

SubClassOf(:Woman :Person)
This says that Woman is a subclass of Person.

In SHACL:
Sub/superclassing is not expressed in SHACL, but rather by RDFS means (rdf:subClassOf and
rdfs:subPropertyOf). However, SHACL validates a shape with class-based target also on all
subclasses of the shape’s target classes.
Additionally, shapes can be logically combined, which also also to include a more general shap
into more specialized ones.
​

In XML Schema, type extensions or restrictions can be used to derive types from other types.
This can happen both for “simple types” (integers, strings, …) and “complex types” (which are
structural, i.e. describe how nodes in XML trees are allowed to be nested).

GSQL does not have subtyping or inheritance yet. It is unclear whether the property graph label concept
can satisfy all subclass typing polymorphism query requirement at this point.

In GraphQL:

17

https://www.w3.org/TR/rdf-schema/#ch_subclassof
https://www.w3.org/TR/rdf-schema/#ch_subpropertyof
https://www.w3.org/TR/shacl/#core-components-logical

GraphQL does not include this semantic. But it has implements keyword which means that it
needs to have the exact fields.

In Cypher for Apache Spark:
​ Subtyping is permitted. See here for more details

Type equivalence
In OWL:

EquivalentClasses(:Person :Human)
This says that Person and Human can be used interchangeably at the instance level.

In SHACL:
SHACL does not allow to express type equivalence.

Property Graphs - I (Victor) do not know of any property graphs that include this semantic.

In GraphQL:
GraphQL does not include this semantic.

In Cypher for Apache Spark:
​ This semantic is not included

Type Disjointness
In OWL:

DisjointClasses(:Woman :Man)
This says that instances cannot be both Man and Woman at the same time.

In SHACL:
SHACL does not allow to express type disjointness.

Property Graphs - I (Victor) do not know of any property graphs that include this semantic.

In GraphQL:
GraphQL does not include this semantic.

In Cypher for Apache Spark:
​ This semantic is not included

18

Data types
XML XSD:

●​ String : string. Various derivations: normalisedString (no CR/LF/tab), token
(identifier-like, allows single spaces) and several for the names of XML and web
constructs

●​ Numeric: decimal, integer, float, double; various signed and unsigned integers of defined
length; integers contrained to positive (>0), negative (<0), nonNegative (>= 0),
nonPositive (<=0)

●​ Date and time : date, time, dateTime, duration and a number of partial date (day, month,
month+day etc.) types

●​ Other: boolean, binary (base64 or hex encoded)

Data value constraints
OWL:
“Datatype properties” in OWL are like properties in the property graph model. However, OWL
defines these properties independent of any class type. After having defined them, they can be
assigned to an instance of any class. Another instance of the same class may not have the
property. So in OWL, note that the properties that instances have are not described in their class
types, but their instances.

SHACL:
SHACL allow to constraints which the properties for a node shape (including datatype
constraints, value range constraints, string value constraints, pair check constraints, and logical
combination of these) with so called property shapes.
SHACL:
SHACL allow to express datatype constraints, value range constraints, string value constraints,
pair check constraints, and logical combination of these.
GSQL:
Properties of vertex/edge types are similar to columns in relational table definition.

Cypher for Apache Spark:
Properties of node and edge types are similar to columns in relational table definition, as this
system is based atop Spark SQL.

Key constraints
SQL: PRIMARY KEY functions as a constraint that requires each key to be UNIQUE.

19

https://www.w3.org/TR/shacl/#PropertyConstraintComponent
https://www.w3.org/TR/shacl/#DatatypeConstraintComponent
https://www.w3.org/TR/shacl/#DatatypeConstraintComponent
https://www.w3.org/TR/shacl/#core-components-range
https://www.w3.org/TR/shacl/#core-components-string
https://www.w3.org/TR/shacl/#core-components-property-pairs
https://www.w3.org/TR/shacl/#core-components-logical
https://www.w3.org/TR/shacl/#core-components-logical
https://www.w3.org/TR/shacl/#property-shapes
https://www.w3.org/TR/shacl/#DatatypeConstraintComponent
https://www.w3.org/TR/shacl/#core-components-range
https://www.w3.org/TR/shacl/#core-components-string
https://www.w3.org/TR/shacl/#core-components-property-pairs
https://www.w3.org/TR/shacl/#core-components-logical
https://www.w3schools.com/sql/sql_primarykey.asp

Datatype-generic constraints

UNIQUE
SQL: UNIQUE ensures that all values in a column are different.

JSON Schema: uniqueItems key - if it has boolean value true, the instance validates
successfully if all of its elements are unique.

GraphQL: The ID scalar type represents a unique identifier.

NOT NULL constraint
SQL: NOT NULL ensures that the column cannot contain NULL values.

XML XSD: The nillable attribute on an element declaration specifies whether an instance can be
null

JSON Schema: type key can have values without null.

GraphQL: ! means that the field is non-nullable.

Cypher for Apache Spark: ? means the field is nullable (i.e. optional)

DEFAULT
SQL: The DEFAULT constraint is used to provide a default value for a column.

XML XSD: A default value can specified for an element (if of simple type or text only)

JSON Schema: The default keyword specifies a default value for an item.

GraphQL: Only when an argument is optional, we can define a default value.

General value range constraint

SQL:

●​ The CHECK constraint is used to limit the value range that can be placed
in a column.​
Example:​

20

https://www.w3schools.com/sql/sql_unique.asp
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.4.5
https://graphql.org/learn/schema/#scalar-types
https://www.w3schools.com/sql/sql_notnull.asp
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.1.1
https://graphql.org/learn/schema/#object-types-and-fields
https://www.w3schools.com/sql/sql_default.asp
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-10.2
https://graphql.org/learn/schema/#arguments
https://www.w3schools.com/sql/sql_check.asp

ALTER TABLE Persons​
ADD CONSTRAINT CHK_PersonAge CHECK (Age>=18 AND City='Sandnes');

Numeric-specific Constraints

Numeric range constraints
SHACL: value range constraints

●​ sh:minExclusive - it specifies the the minimum exclusive value
●​ sh:minInclusive - it specifies the the minimum inclusive value
●​ sh:maxExclusive - it specifies the the maximum exclusive value
●​ sh:maxInclusive - it specifies the the maximum inclusive value

XML Schema: Constraining Facets

●​ xs:maxExclusive
●​ xs:minExclusive
●​ xs:maxInclusive
●​ xs:minInclusive

JSON Schema: Validation Keywords for Numeric Instances (number and integer)

●​ multipleOf
●​ maximum
●​ exclusiveMaximum
●​ minimum
●​ exclusiveMinimum

GSQL:
no value-range constraints. Supports INT, UINT, FLOAT, and DOUBLE numeric types.

SQL:

●​ AUTO INCREMENT allows a unique number to be generated automatically when a new
record is inserted into a table.

Cypher for Apache Spark:
There are no value-range constraints. SQL numeric types are supported.

Other numeric constraints
XML Schema: Constraining Facets

●​ xs:fractionDigits
●​ xs:totalDigits
●​ xs:assertion
●​ xs:explicitTimezone

21

https://www.w3.org/TR/shacl/#core-components-range
https://www.w3.org/TR/xmlschema11-2/#rf-facets
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.2
https://www.w3schools.com/sql/sql_autoincrement.asp
https://www.w3.org/TR/xmlschema11-2/#rf-facets

String-specific Constraints
SHACL: string value constraints

●​ sh:minLength - it specifies the minimum literal length of each value node that satisfies
the condition.

●​ sh:maxLength - it specifies the maximum literal length of each value node that satisfies
the condition.

●​ sh:pattern - it specifies a regular expression that each value node matches to satisfy the
condition.

●​ sh:languageIn - it specifies the allowed language tags for each value node
●​ sh:uniqueLang - it can be set to true to specify that no pair of value nodes may use the

same language tag

JSON Schema: Validation Keywords for Strings

●​ minLength
●​ maxLength
●​ pattern

XML Schema: Constraining Facets

●​ xs:length
●​ xs:minLength
●​ xs:maxLength
●​ xs:pattern

GSQL:
No string-based constraints. All strings are variable length (VARCHAR, not CHAR).

Cypher for Apache Spark:
There are no string-based constraints. SQL string types are supported.

Property Pair Constraints
OWL:

●​ owl:equivalentProperty can be used to state that two properties have the same
property extension, which means that they have the same “values”. Not to be confused
with owl:sameAs which can be used to specify that two properties are the same even
though they have different names.

SHACL: pair check constraints

22

https://www.w3.org/TR/shacl/#core-components-string
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.3
https://www.w3.org/TR/xmlschema11-2/#rf-facets
https://www.w3.org/TR/shacl/#core-components-property-pairs

●​ sh:equals - it specifies the condition that the set of all value nodes is equal to the set of
objects

●​ sh:disjoint - it specifies the condition that the set of value nodes is disjoint with the set of
objects

●​ sh:lessThan - it specifies the condition that each value node is smaller than all the
objects

●​ sh:lessThanOrEquals - it specifies the condition that each value node is smaller than or
equal to all the objects

Multiple values
XML XSD: An element (within a sequence or all) can have a maxOccurs attribute other than the
default 1, including unbounded. In an instance document, there is no difference between an
element specified with maxOccurs=1 and a single occurrence of an element that could have
been multiple (i.e. there is no special structure for an array)

JSON Schema: Validation Keywords for Arrays

●​ items
●​ additionalItems
●​ maxItems
●​ minItems
●​ uniqueItems
●​ contains

GraphQL:
GraphQL supports arrays and enumerations.

SHACL:
SHACL supports RDF lists.

Edges (Relationships)
OWL:
In OWL, links between instances of classes are defined by “object properties”. Note that OWL
also has the concept of “datatype properties”, see above. Like datatype properties, object
properties are defined independent of any class type. After having defined them, they can be
assigned to an instance of any class, to relate it to any instance of another class.

SHACL:
As RDF, SHACL does not distinguish between properties and relationships. Both are treat in
similar fashion. Nethertheless, SHACL allow to constraint the endpoints of a

23

https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.4
https://graphql.org/learn/schema/#object-types-and-fields
https://graphql.org/learn/schema/#enumeration-types
https://www.w3.org/TR/shacl/#core-components-value-type

property/relationship as well as cardinalities. A predicate can be constraint into representing a
property or relationship by the class constraint and the node kind constraint.

Source and destination types for Edges
(Relationships)

OWL:

●​ rdfs:domain allows you to specify the permissible source classes of an object (or
datatype) property​
​
Multiple rdfs:domain axioms are allowed and should be interpreted as a conjunction:
these restrict the domain of the property to those individuals that belong to the
intersection of the class descriptions. If one would want to say that multiple classes can
act as domain, one should use a class description of the owl:unionOf form.​

●​ rdfs:range allows you to specify the permissible destination classes of an object
property (or the permissible datatype property values for a datatype property).​
​
Multiple range restrictions are interpreted as stating that the range of the property is the
intersection of all ranges (i.e., the intersection of the class extension of the class
descriptions c.q. the intersection of the data ranges). Similar to rdfs:domain, multiple
alternative ranges can be specified by using a class description of the owl:unionOf form
(see the previous subsection).
​
Note that, unlike any of the value constraints described in the section on class
descriptions, rdfs:range restrictions are global. Value constraints such as
owl:allValuesFrom are used in a class description and are only enforced on the property
when applied to that class. In contrast, rdfs:range restrictions apply to the property
irrespective of the class to which it is applied. Thus, rdfs:range should be used with care.

●​ owl:disjointWith allows you to state that an instance of this class cannot be an instance
of another​
– E.g. Man and Woman could be stated as disjoint classes​

●​ owl:unionOf allows you specify that a class contains things that are from more than one
class​
– E.g. Restroom could be defined as a union of MensRoom and LadiesRoom​

24

https://www.w3.org/TR/shacl/#core-components-count
https://www.w3.org/TR/shacl/#ClassConstraintComponent
https://www.w3.org/TR/shacl/#NodeKindConstraintComponent
https://www.w3.org/TR/owl-ref/#domain-def
https://www.w3.org/TR/owl-ref/#unionOf-def
https://www.w3.org/TR/owl-ref/#ValueRestriction
https://www.w3.org/TR/owl-ref/#allValuesFrom-def

●​ owl:intersectionOf allows you to specify that a class contains things that are both in
one and the other​

●​ owl:complementOf allows you specify that a class contains things that are not other
things​
– E.g. Children are not SeniorCitizens

SHACL:
SHACL allow to constraint the endpoints of a relationship.

GSQL:

●​ An edge type definition specifies the types of vertices that it connects. The definition can
specify the exact vertex types, e.g.,​
CREATE DIRECTED EDGE enrolledIn (FROM Student, TO Course, …)

●​ An edge type definition can use a wildcard for either the source vertex type, the
destination vertex type, or both, e.g.,​
CREATE DIRECTED EDGE likes (FROM Person, TO *, …)

Cypher for Apache Spark:

●​ An edge type specifies the types of nodes that it connects. See here for more details.
●​ An edge type definition can use blank brackets to denote a wildcard for either the tail or

head or an edge type. E.g. ()-[LIKES]->()
●​ An edge type definition can also indicate that there is no direction to the edge. E.g.

(Person)-[LIKES]-(Person)

Structural Constraints

Cardinality constraints
OWL:

●​ owl:cardinality
●​ owl:qualifiedCardinality
●​ owl:maxCardinality
●​ owl:maxQualifiedCardinality
●​ owl:minCardinality
●​ owl:minQualifiedCardinality

SHACL: instance cardinalities and endpoint cardinalities
●​ sh:qualifiedMinCount
●​ sh:qualifiedMaxCount
●​ sh:minCount - it specifies the minimum number of value nodes that satisfy the condition
●​ sh:maxCount - it specifies the maximum number of value nodes that satisfy the condition

XML Schema:

25

https://www.w3.org/TR/shacl/#core-components-value-type
https://www.w3.org/TR/shacl/#QualifiedValueShapeConstraintComponent
https://www.w3.org/TR/shacl/#core-components-count
https://www.w3.org/TR/shacl/#MinCountConstraintComponent
https://www.w3.org/TR/shacl/#MaxCountConstraintComponent

●​ xs:minOccurs
●​ xs:maxOccurs

JSON Schema:
●​ maxProperties
●​ minProperties

GSQL:
A side effect of defining an edge's primary key as (source_vertex_id, dest_vertex_id) is that
there is an implicit 1:1 constraint, for a given edge type. Future versions of GSQL will support a
user-defined or user-expanded primary key, to allow many:many relationships.

Cypher for Apache Spark:
Node and edge keys

Logical Constraints
SHACL: logical combination of these

●​ sh:not - it specifies the condition that each value node cannot conform to a given shape
●​ sh:and - it specifies the condition that each value node conforms to all provided shapes
●​ sh:or - it specifies the condition that each value node conforms to at least one of the

provided shapes
●​ sh:xone - it specifies the condition that each value node conforms to exactly one of the

provided shapes

26

https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.5.1
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.5.2
https://www.w3.org/TR/shacl/#core-components-logical

Example schemas

OWL
From http://www.linkeddatatools.com/introducing-rdfs-owl

27

Oracle PGX “heterogeneous graph” schema
Example graph:

Corresponding schema definition:

{
 "name": "financial_transactions",
 "vertex_id_type" : "long",
 "edge_id_type" : "long",
 "edge_id_strategy" : "keys_as_ids",
 "vertex_providers": [
 {
 "format": "csv",
 "name": "Account",
 "key_column" : 1,
 "key_type" : "long",
 "props": [
 {
 "name": "number",
 "type": "long",
 "column": 2
 }
],
 "separator": " ",
 "uris": ["accounts.csv"]
 },
 {
 "format": "csv",
 "name": "Person",
 "key_column" : 1,

28

 "key_type" : "long",
 "props": [
 {
 "name": "name",
 "type": "string",
 "column": 2
 }
],
 "separator": " ",
 "uris": ["persons.csv"]
 },
 {
 "format": "csv",
 "name": "Company",
 "key_column" : 1,
 "key_type" : "long",
 "props": [
 {
 "name": "name",
 "type": "string",
 "column": 2
 }
],
 "separator": " ",
 "uris": ["companies.csv"]
 }
],
 "edge_providers": [
 {
 "format": "csv",
 "name": "transaction",
 "source_vertex_provider": "Account",
 "destination_vertex_provider": "Account",
 "key_column" : 1,
 "key_type" : "long",
 "source_column" : 2,
 "destination_column" : 3,
 "props": [
 {
 "name": "key",
 "type": "long",
 "column": 1
 },
 {
 "name": "amount",
 "type": "double",
 "column": 4
 }
],
 "loading": {
 "create_key_mapping": true
 },
 "separator": " ",
 "uris": ["transactions.csv"]
 },
 {
 "format": "csv",

29

 "name": "ownerOf1",
 "source_vertex_provider": "Person",
 "destination_vertex_provider": "Account",
 "key_column" : 1,
 "key_type" : "long",
 "source_column" : 2,
 "destination_column" : 3,
 "props": [
 {
 "name": "key",
 "type": "long",
 "column": 1
 }
],
 "loading": {
 "create_key_mapping": true
 },
 "separator": " ",
 "uris": ["person_ownerOf_account.csv"]
 },
 {
 "format": "csv",
 "name": "ownerOf2",
 "source_vertex_provider": "Company",
 "destination_vertex_provider": "Account",
 "key_column" : 1,
 "key_type" : "long",
 "source_column" : 2,
 "destination_column" : 3,
 "props": [
 {
 "name": "key",
 "type": "long",
 "column": 1
 }
],
 "loading": {
 "create_key_mapping": true
 },
 "separator": " ",
 "uris": ["company_ownerOf_account.csv"]
 },
 {
 "format": "csv",
 "name": "worksFor",
 "source_vertex_provider": "Person",
 "destination_vertex_provider": "Company",
 "key_column" : 1,
 "key_type" : "long",
 "source_column" : 2,
 "destination_column" : 3,
 "props": [
 {
 "name": "key",
 "type": "long",
 "column": 1
 }

30

],
 "loading": {
 "create_key_mapping": true
 },
 "separator": " ",
 "uris": ["person_worksFor_company.csv"]
 }
]
}

Graph processing in SQL Server
From
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-s
erver-2017

CREATE TABLE Person (ID INTEGER PRIMARY KEY, Name VARCHAR(100), Age INT) AS NODE;​
CREATE TABLE friends (StartDate date) AS EDGE;

SQL
CREATE TABLE Persons (

​ PersonID int,

​ LastName varchar(255),

​ FirstName varchar(255),

​ Address varchar(255),

​ City varchar(255)

);

ALTER TABLE Persons

ADD Email varchar(255);

Cypher for Apache Spark

CREATE GRAPH Census_1901 (

 -- Nodes
 LicensedDog (
 licence_number INTEGER
) KEY LicensedDog_NK (licence_number),

 Person (
 first_name STRING?,

31

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-2017

 last_name STRING?
),

 Visitor (
 date_of_entry STRING,
 sequence INTEGER,
 nationality STRING?,
 age INTEGER?
) KEY Visitor_NK (date_of_entry, sequence),

 Resident (
 person_number STRING
) KEY Resident_NK (person_number),

 Town (
 CITY_NAME STRING,
 REGION STRING
) KEY Town_NK (REGION, CITY_NAME),

 -- Relationships
 PRESENT_IN,
 LICENSED_BY (
 date_of_licence STRING
),

 -- Node mappings:
 (Visitor, Person)
 FROM VIEW_VISITOR,

 (LicensedDog)
 FROM VIEW_LICENSED_DOG,

 (Town)
 FROM TOWN,

 (Resident, Person)
 FROM VIEW_RESIDENT,

 -- Relationship mappings:
 (Person, Resident)-[PRESENT_IN]->(Town)
 FROM VIEW_RESIDENT_ENUMERATED_IN_TOWN edge
 START NODES (Person, Resident)
 FROM VIEW_RESIDENT start_nodes
 JOIN ON start_nodes.PERSON_NUMBER = edge.PERSON_NUMBER
 END NODES (Town)
 FROM TOWN end_nodes
 JOIN ON end_nodes.REGION = edge.REGION
 AND end_nodes.CITY_NAME = edge.CITY_NAME,

32

 (Person, Visitor)-[PRESENT_IN]->(Town)
 FROM VIEW_VISITOR_ENUMERATED_IN_TOWN edge
 START NODES (Person, Visitor)
 FROM VIEW_VISITOR start_nodes
 JOIN ON start_nodes.NATIONALITY = edge.COUNTRYOFORIGIN
 AND start_nodes.PASSPORT_NUMBER = edge.PASSPORT_NO
 END NODES (Town)
 FROM TOWN end_nodes
 JOIN ON end_nodes.REGION = edge.REGION
 AND end_nodes.CITY_NAME = edge.CITY_NAME,
 (LicensedDog)-[PRESENT_IN]->(Town)
 FROM VIEW_LICENSED_DOG edge
 START NODES (LicensedDog)
 FROM VIEW_LICENSED_DOG start_nodes
 JOIN ON start_nodes.LICENCE_NUMBER = edge.LICENCE_NUMBER
 END NODES (Town)
 FROM TOWN end_nodes
 JOIN ON end_nodes.REGION = edge.REGION
 AND end_nodes.CITY_NAME = edge.CITY_NAME,

 (LicensedDog)-[LICENSED_BY]->(Person, Resident)
 FROM VIEW_LICENSED_DOG edge
 START NODES (LicensedDog)
 FROM VIEW_LICENSED_DOG start_nodes
 JOIN ON start_nodes.LICENCE_NUMBER = edge.LICENCE_NUMBER
 END NODES (Person, Resident)
 FROM VIEW_RESIDENT end_nodes
 JOIN ON end_nodes.PERSON_NUMBER = edge.PERSON_NUMBER
)

33

	Industry Survey
	Table of contents
	Introduction
	Participants
	Languages

	Overview
	General concepts
	Types Hierarchy
	Types
	ID types (Graph.Features)
	Property value types (Graph.Features)

	Data value constraints
	
	Graph.Features

	Structural constraints

	General concepts
	Schema management
	Open world vs. closed world assumption
	Unique name assumption
	Multiple Graphs
	Schema reuse
	Schema Change

	Types and Instances
	Types
	Types in Property Graphs
	High-level types
	Edge labels
	Vertex properties
	Edge properties
	Vertex meta-properties
	Meta-edges: edge to vertex
	Meta-edges: vertex to edge
	Compare to: hyper-edge
	Compare to: RDF property

	Subtyping
	Type equivalence
	Type Disjointness
	Data types

	Data value constraints
	Key constraints
	Datatype-generic constraints
	UNIQUE
	NOT NULL constraint
	DEFAULT
	General value range constraint

	Numeric-specific Constraints
	Numeric range constraints
	Other numeric constraints

	String-specific Constraints
	Property Pair Constraints

	Multiple values
	Edges (Relationships)
	Source and destination types for Edges (Relationships)
	Structural Constraints
	Cardinality constraints
	Logical Constraints

	Example schemas
	OWL
	
	Oracle PGX “heterogeneous graph” schema
	Graph processing in SQL Server
	SQL
	Cypher for Apache Spark

