

GA4GH Projects for GSoC 2025

For more information about GSoC 2025, please visit
https://summerofcode.withgoogle.com/about. Note the following while filling out the below
form.

●​ Create a copy of the project information template from below and fill out project
information.

●​ All the fields in the form (table) are necessary for submission.
●​ Project’s difficulty is defined by the following matrix:

○​ ~90 hours is small project
○​ ~175 hours is medium project
○​ ~350 hours is large project

●​ Provide as much information as possible to help contributors decide and submit
proposals.

●​ For any queries/clarifications, please contact Jimmy Payyappilly: Jimmy Payyappilly

Table of Contents

Table of Contents​ 1
Projects​ 1

Project Name: Leverage Cat-VRS in a clinical decision support pipeline​ 2
Project Name: Extension of the GA4GH-SDK​ 4
Project Name: Secure Data Handling with Crypt4GH, Confidential Computing, DRS and TES​7
Project Name: GA4GH Cloud Secrets Management with Python Starlette, Microsoft Dapr and
HashiCorp Vault​ 9
Project Name: Integrate Elixir Component to Krini​ 11
Project Name: Web Components Authentication & Access Control Framework​ 12

1. Enhance and Abstract the Access Control API within FOCA​ 13
2. Develop a Lit-Based Web Component Package​ 13
Expected Outcomes (with rough timeline, adaptable by contributor)​ 13

Project Name: Template (copy and create, do not modify!)​ 14

Projects
Please share the details of the projects below

mailto:jimmy.payyappilly@ga4gh.org
https://summerofcode.withgoogle.com/about

Project Name: Leverage Cat-VRS in a clinical decision support
pipeline

Workstream Genomic Knowledge Standards

Mentor
names/emails

●​ Bob Dolin, MD (bdolin@elimu.io)
●​ Daniel Puthawala, PhD

(Daniel.Puthawala@nationwidechildrens.org)
●​ Akash Rampersad (akashjrampersad@gmail.com)

Difficulty MEDIUM to LARGE

Requirements Required:
●​ Python

Required to be learned as part of the project:
●​ Working understanding of the GA4GH Cat-VRS

specification
●​ Working understanding of the HL7 CQL

specification
Other technologies student will be exposed to:

●​ HL7 FHIR Genomics Reporting Implementation
Guide ('FHIR Genomics')

●​ https://github.com/ga4gh/cat-vrs-python

Workload 175h - 350h (approximately 20h/week)

Project Description

Project Overview

This project seeks to test the use of GA4GH knowledge standards in a clinical decision
support pipeline.

Representative knowledge, encoded per the GA4GH Cat-VRS specification, will be
obtained from public knowledge bases ClinVar and CIViC. That knowledge will be
translated into HL7 CQL format and loaded into a CQL execution engine.

Sample (publicly anonymized or synthetic) patient data will be created. Clinical and
genetic data will be FHIR-formatted and placed on a public FHIR server.

The CQL execution engine will then be fed FHIR-formatted genomic data and will attempt
to automatically associate that data with knowledge. The CQL engine will generate
FHIR-formatted annotated genomic data, where those annotations are derived from the
public knowledge sources.

mailto:bdolin@elimu.io
mailto:Daniel.Puthawala@nationwidechildrens.org
mailto:akashjrampersad@gmail.com
https://www.ga4gh.org/product/categorical-variation-catvar/
https://cql.hl7.org/
https://hl7.org/fhir/uv/genomics-reporting/
https://hl7.org/fhir/uv/genomics-reporting/
https://github.com/ga4gh/cat-vrs-python
https://www.ncbi.nlm.nih.gov/clinvar/
https://civicdb.org/welcome

Stretch goals for the project are to encapsulate this pipeline in a prototype API, and to
surface the annotated data via a simple user-facing app.

Project Milestones

●​ Obtain representative knowledge, encoded per the GA4GH Categorical Variation
Representation specification (Cat-VRS).

●​ Develop Cat-VRS to CQL translator
●​ Obtain or create sample patient data, encoded per the FHIR Genomics

specification.
●​ Develop execution framework using a public CQL engine
●​ Stretch goals

○​ Develop a prototype API
○​ Surface annotated genome data via a user-facing app

Project Timeline

GSOC master timeline (coding is ~June/July/Aug, ~13 weeks)

●​ May 8 - Jun 1: Accepted students will begin to familiarize themself with Cat-VRS
and CQL. Students will meet with mentors to learn more about the scope and
details of the project.

●​ Jun 2 - Sep 1: Weekly scrum call, attacking each Project Milestone in order.
Roughly:

○​ 2 weeks: Obtain or create representative knowledge, encoded per the
GA4GH Cat-VRS specification.

○​ 6 weeks: Develop Cat-VRS to CQL translator.
○​ 1 week: Obtain or create sample patient data, encoded per the FHIR

Genomics specification.
○​ 2 weeks: Develop execution framework using a public CQL engine.
○​ 2 weeks: Stretch goals

■​ Develop a prototype API.
■​ Surface annotated genome data via a user-facing app.

Project Requirements

Project requirements are listed above. Baseline Python knowledge is required. For the
other items, we will give preference to those students who express an interest in
self-learning and who agree to use the May 8 - June 1 period to familiarize themselves
with relevant technologies and standards. It is important to stress that students must be
self-motivated for self-learning (with mentorship guidance).

https://developers.google.com/open-source/gsoc/timeline

Project Name: Extension of the GA4GH-SDK

Workstream Cloud Workstream

Mentor
names/emails

●​ Pavel Nikonorov (pavel@genxt.network)
●​ Secondary mentors TBA

Difficulty LARGE

Requirements Required:
●​ Rust
●​ Python

Required to be learned as part of the project:
●​ GA4GH API specifications & implementations

Other technologies students will be exposed to:
●​ Attested-TLS (Confidential Computing; TEEs)

Workload 175h/350h

Project Description

Provide detailed information on the project for contributors to understand the scope of the
project, tasks and expectations. Sub-sections included could be project overview,
milestones, timelines, and impact.

The GA4GH-SDK is an evolving Rust-based toolkit designed to streamline interactions
with GA4GH API standards such as ServiceInfo, DRS, TRS, TES, and WES. Building on
prior efforts, this 2025 GSoC project aims to extend and enhance the GA4GH-SDK by
focusing on DRS support and cross-API compatibility by using DRS identifiers with TES
Task submission.

Current Development Status: The project already has ServiceInfo and TES support
implemented, as well as the extension subsystem allowing for loadable extensions such
as GENXT Confido, an implementation of the Attested-TLS (aTLS) protocol powered by
Confidential Computing (Trusted Execution Environments). The project also has CLI
implemented on top of the SDK that provides UI/UX similar to conventional cloud
consoles. New contributors should first familiarise themselves with the existing
development status, features, architecture, and codebase. This stage is critical for
identifying opportunities for further development and ensuring alignment with the project's
strategic goals.

mailto:pavel@genxt.network
https://www.ga4gh.org/product/data-repository-service-drs/

Project Milestones:

A good proposal could cover these or a similar set of milestones. The number of
milestones included in a proposal will define the size of the project (medium or large).

●​ Initial Setup and Planning: Understand GA4GH API standards and identify
libraries/tools for potential leverage or contribution. Set up ELIXIR TESK in an
aTLS-enabled environment (provided by GENXT) and test existing SDK/CLI
functionality (see the SDK documentation and/or consult with the mentors).
Decide on the number of additional API clients to implement within the following
priority: DRS (required), TRS, ServiceRegistry, and WES. For each client ensure
having a backend service instance for development purposes (use the GA4GH
Starter Kit and/or consult with the mentors).

●​ Core Library Development: implement one or more API clients as decided during
the planning stage, provide documentation, test coverage, and CI/CD support.

●​ CLI Tool Development: for each new API client implement CLI support.
●​ Python bindings: Enhance the lib’s accessibility by extending Python bindings for

new functionality.
●​ Documentation and Community Feedback: Produce comprehensive

documentation with an end-to-end demonstrator of working with DRS instances
and TES Tasks with DRS identifiers, as well as potentially other API clients
implemented during the project. Engage with the GA4GH community for feedback
and ongoing development.

●​ CLI Tool Test Coverage (stretch Goal): ​​Implement comprehensive automated
testing to validate CLI commands, parameters, and outputs through both unit and
integration tests, ensuring reliable performance and easy maintenance.

Contributors are encouraged to outline a timeline in their application, taking into account
the described milestones and potential stretch goals.

Impact: By joining this project, you will substantially contribute towards a future where
AI-driven biomedical research aligns with the GA4GH vision of interoperability and secure
data sharing for the benefit of human health. Through advanced protocols like attested
TLS for hardware-enforced privacy policy protection across federated environments, your
contributions will safeguard sensitive genomic and medical data while enabling
groundbreaking discoveries in a globally connected life sciences ecosystem. In doing so,
you’ll empower researchers and data holders to collaborate, ensuring Responsible AI
remains at the core of next-generation biomedical research.

https://github.com/elixir-cloud-aai/TESK
https://www.genxt.network
https://www.ga4gh.org/product/data-repository-service-drs/
https://www.ga4gh.org/product/tool-registry-service-trs/
https://www.ga4gh.org/product/service-registry/
https://www.ga4gh.org/product/workflow-execution-service-wes/
https://starterkit.ga4gh.org/
https://starterkit.ga4gh.org/

Project Name: Secure Data Handling with Crypt4GH, Confidential
Computing, DRS and TES

Workstream Cloud Workstream

Mentor
names/emails

●​ Joris Vankerschaver
●​ Secondary mentors TBA

Difficulty Hard

Requirements Microservices, Python. Familiarity with confidential
computing is a plus.

Workload 175h

Project Description

Overview:

In this project, you will combine GA4GH technologies for accessing data (DRS) and
running computational tasks (TES), with standards for encrypting data at rest (Crypt4GH)
and handling data securely during processing in remote VM-based Trusted Execution
Environments (Confidential Computing) verified with Attested-TLS (aTLS) protocol. More
specifically, you will build a proof-of-concept solution that:

1.​ DRS server provides Crypt4GH-encrypted data upon successful aTLS verification of
the TES instance.

2.​ Given a DRS ID, the TES Task executor retrieves a Crypt4GH-encrypted data file
from file storage (optionally, upon successful aTLS verification of the DRS
instance).

3.​ Executes a computational task on the data using a Task Execution Service (TES)
backend, running within a Confidential Computing environment. The environment
should decrypt the data prior to processing it, and encrypt the outputs of the task.

4.​ Returns a DRS ID to the encrypted outputs that the client can use to securely
receive the data.

A successful prototype will demonstrate that data can securely be handled at rest and in
transit (via Crypt4GH) and can be handled securely during processing (via Confidential
Computing), and can form the basis for an eventual production-ready solution that puts
data security and privacy first and foremost.

As this project ties together several different GA4GH standards and underlying
implementations, while also bridging the gap with non-GA4GH standards for data security,
it is highly recommended to start from established services, such as DRS-Filer for DRS (for
which a proof-of-concept integration with Crypt4GH already exists), TESK for TES, and the
GENXT Confido library for Attested-TLS.

For this project, good Python programming skills and familiarity with microservices are
desirable. Experience with confidential computing and cryptographic standards such as
Crypt4GH is not required, and can be acquired over the course of the project.

Expected outcomes:

1.​ A working proof-of-concept implementation that can be demonstrated to
developers and other interested parties.

2.​ Design docs and specs contributing to the planning for a production-ready
solution.

3.​ Wherever possible, contributions to existing open source projects to facilitate the
integration of Crypt4GH and confidential computing.

https://github.com/elixir-cloud-aai/drs-filer
https://github.com/elixir-cloud-aai/TESK

Project Name: GA4GH Cloud Secrets Management with Python
Starlette, Microsoft Dapr and HashiCorp Vault

Workstream Data Security, Cloud

Mentor
names/emails

●​ Alex Kanitz <alexanderkanitz@gmail.com>
●​ Secondary mentors TBA

Difficulty Hard

Requirements ●​ Strong Python programming skills.
●​ Experience with Flask, Starlette, FastAPI or other

Python microservices
●​ Experience with Docker and Kubernetes
●​ Understanding of security best practices
●​ Familiarity with Dapr and/or HashiCorp Vault is a

plus

Workload 350h

Project Description

This project addresses the critical need for secure and manageable secrets access within
cloud-native bioinformatics workflows. The goal is to create a reusable Starlette
middleware component that integrates with the Dapr (Distributed Application Runtime)
secret stores API, providing a consistent and secure way for ELIXIR Cloud & AAI’s
FOCA-based microservices to access secrets, with HashiCorp Vault as the initial backend.
This approach simplifies secrets management for developers, improves security, and
promotes portability across different cloud environments. This is a potential blueprint for
GA4GH-powered cloud stacks in general for handling secrets management.​
​
The contributor will:

1.​ Develop Starlette Middleware: Create a Python middleware for Starlette that uses
the Dapr Python SDK to interact with the Dapr secret stores API. This middleware
will handle authentication to Dapr and provide a simple interface for services to
retrieve secrets (e.g., via configuration, request context, or a decorator).

2.​ Integrate with proTES: Integrate the middleware with the proTES service, an
existing FOCA-based backend, demonstrating a practical application. This involves
modifying proTES to use the middleware for secret retrieval. Note that this requires
updating FOCA to use Connexion 3 and updating proTES to use the updated FOCA.

mailto:alexanderkanitz@gmail.com
https://www.starlette.io/middleware/
https://www.starlette.io/middleware/
https://docs.dapr.io/developing-applications/building-blocks/secrets/secrets-overview/
https://docs.dapr.io/developing-applications/building-blocks/secrets/secrets-overview/
https://github.com/elixir-cloud-aai/foca
https://www.vaultproject.io/
https://www.starlette.io/
https://github.com/elixir-cloud-aai/proTES

This will be done prior to the start of the project and is not a project requirement -
the contributor should assume this to be in place!

3.​ Deploy a Test Environment: Set up a local development environment using Docker
Compose and a production-like environment using Kubernetes, including:

○​ proTES with the integrated middleware.
○​ A Dapr sidecar for proTES.
○​ A HashiCorp Vault instance.

4.​ Write Tests: Develop unit, integration, and end-to-end tests to validate the
functionality, security, and error handling of the middleware and its integration.

5.​ Write Documentation: Create clear and concise documentation, including
examples, to enable developers to use the created middleware and integrate
secrets into their services.

Expected Outcomes (with rough timeline, to be adapted by contributor):

●​ A reusable, well-documented Starlette middleware for Dapr-based secrets access
(week 3)

●​ A working integration with proTES (week 5)
●​ Deployment configurations (Docker Compose and Kubernetes) (week 7)
●​ A comprehensive test suite (week 9)
●​ Improved developer experience and security posture when handling secrets within

FOCA-compliant services (week 11)

Project Name: Integrate Elixir Component to Krini

Workstream Cloud Workstream

Mentor
names/emails

●​ Javed Habib <jh4official@gmail.com>

Difficulty Medium

Requirements ●​ Strong programming skills in Python and JavaScript (React
for web component integration).

●​ Experience with containerization and orchestration (Docker,
Kubernetes, Helm).

●​ Knowledge of infrastructure management (Terraform,
Mikube).

●​ Familiarity with API integration (REST, Weskit, Tesk).
●​ Understanding of CI/CD pipelines (GitHub Actions,

Jenkins).

Workload 175h

Project Description

This project aims to integrate the Elixir Cloud component (Web Components) into Krini
while ensuring seamless interoperability with essential APIs and services, including WES
(maybe using Weskit), TES (using Tesk), DRS, and TRS. The integration process will involve
containerization using Docker Compose, orchestration with Kubernetes (Helm charts), and
infrastructure provisioning with Terraform to facilitate a Mikube setup. The final outcome
will be a fully functional, scalable, and easily deployable system for Krini.
The project will involve:

●​ Integrating the Cloud component into Krini's architecture.
●​ Implementing WES (using Weskit) for workflow execution.
●​ Integrating TES (using Tesk) for task execution.
●​ Enabling support for DRS and TRS for data resolution and tool discovery.
●​ Developing Helm charts for Kubernetes-based deployment.
●​ Creating a Docker Compose setup for local development and testing.
●​ Writing Terraform configurations for initiating a Mikube-based setup.
●​ Implementing CI/CD pipelines for automated builds and testing.
●​ Writing documentation for setup, usage, and troubleshooting.
●​ Conducting comprehensive testing to validate integrations.

Stretch Goal

https://github.com/elixir-cloud-aai/cloud-components
https://github.com/elixir-cloud-aai/krini
https://github.com/ga4gh/workflow-execution-service-schemas
https://gitlab.com/one-touch-pipeline/weskit/api
https://github.com/ga4gh/task-execution-schemas
https://github.com/elixir-cloud-aai/TESK/
https://github.com/ga4gh/data-repository-service-schemas
https://github.com/ga4gh/tool-registry-service-schemas
https://github.com/ga4gh/tool-registry-service-schemas
https://kubernetes.io/
https://helm.sh/
https://www.terraform.io/
https://www.terraform.io/

The APIs interact with each other and a complete end to end flow can be run.
Timeline

Week​ Tasks
1–2​ Research existing components; Set up Minikube with Terraform.
3–4​ Develop Helm charts for WES (weskit) and TES (tesk).
5–6​ Integrate DRS/TRS; Draft Docker Compose setup.
7–8​ Embed Cloud component into Krini UI; Configure API gateways.
9–10​ Write tests; Validate end-to-end workflows.
11–12​Finalize documentation; Optimize performance; Prepare demo.

​
Project Name: Web Components Authentication & Access Control
Framework

Workstream Cloud Workstream

Mentor
names/emails

●​ Anurag Gupta <aguptaking@gmail.com>
●​ Secondary mentors TBA

Difficulty Hard

Requirements ●​ Proficiency in Python (Flask/FastAPI) for backend.
●​ Strong experience with JavaScript/TypeScript and

Lit for frontend.
●​ Understanding of OAuth2, JWT, OIDC, and security

best practices.
●​ Experience with RESTful APIs, API gateways, and

cloud integrations.
●​ Familiarity with Git, CI/CD, and automated testing.

Workload 350h

Project Description

This project focuses on enhancing and abstracting access control for cloud-based
services by improving the FOCA Access Control API and creating a Lit-based web
component package (kind of like react)for seamless integration. The aim is to provide a
reusable, plug-and-play authentication and authorization system, ensuring consistency
across different cloud service components.

The project consists of two major phases:

1. Enhance and Abstract the Access Control API within FOCA

FOCA serves as an abstraction layer for cloud services, providing common functionalities,
including authentication and authorization. This phase will focus on:

●​ Refining and exposing FOCA’s Access Control API to ensure it can be easily
integrated with frontend applications.

●​ Standardizing access control workflows to ensure compatibility with various cloud
services.

●​ Enhancing documentation and developer usability, making it easier for other
services to adopt the API.

The current documentation for FOCA’s Access Control API can be found here.

2. Develop a Lit-Based Web Component Package

The second phase involves developing a Lit-based web component package that acts as
a frontend abstraction for authentication and access control. This component will:

●​ Provide a generic, reusable access control UI that integrates with the FOCA API.
●​ Support multiple authentication mechanisms dynamically, allowing different

services to configure access control easily.
●​ Enable seamless integration with other cloud service components by exposing a

well-defined API for other packages.
●​ Ensure flexibility and ease of use, allowing cloud services to implement

authentication without redundant frontend development.

The first target integration will be with the GA4GH TES (Task Execution Service) client,
available in the cloud-components repository.

Expected Outcomes (with rough timeline, adaptable by contributor)

●​ A frontend-compatible Access Control API (week 4)
●​ A reusable Lit web component for authentication (week 8)
●​ Integration with GA4GH TES client (week 10)
●​ Comprehensive documentation and security posture (week 12)

https://github.com/elixir-cloud-aai/foca/blob/dev/docs/access_control/README.md
https://github.com/elixir-cloud-aai/cloud-components/tree/main/packages/ecc-client-ga4gh-tes

Project Name: Template (copy and create, do not modify!)

Workstream

Mentor
names/emails

●​

Difficulty

Requirements

Workload 90h/175h/350h

Project Description

Provide detailed information on the project for contributors to understand the scope of the
project, tasks and expectations. Sub-sections included could be project overview,
milestones, timelines, impact.

	GA4GH Projects for GSoC 2025
	Table of Contents
	Projects
	Project Name: Leverage Cat-VRS in a clinical decision support pipeline
	Project Name: Extension of the GA4GH-SDK
	
	Project Name: Secure Data Handling with Crypt4GH, Confidential Computing, DRS and TES
	
	Project Name: GA4GH Cloud Secrets Management with Python Starlette, Microsoft Dapr and HashiCorp Vault
	
	Project Name: Integrate Elixir Component to Krini
	​Project Name: Web Components Authentication & Access Control Framework
	1. Enhance and Abstract the Access Control API within FOCA
	2. Develop a Lit-Based Web Component Package
	Expected Outcomes (with rough timeline, adaptable by contributor)

	Project Name: Template (copy and create, do not modify!)

