
Submitting Jobs and Running Programs
Blue Waters Petascale Institute 2016

Week 1, Tuesday (May 31), 10:55-11:40am and 3:00-4:45pm
Author: Aaron Weeden, Shodor

Materials

●​ Example code
https://shodor.org/media/content//petascale/materials/BW2016/day02/day02-submitting-and-running.zip

Introduction
The goal of this section is to introduce how to submit jobs and run programs on Blue Waters.
Whenever we want to run a program on Blue Waters, we first have to submit a job to the
scheduler. A job is a specification of the time and space requirements and the commands that
need to be executed in order to run a program. The scheduler is an automated system that
keeps track of which jobs need to run and allocates time and space on the machine for those
jobs to run. Time is measured in hours, minutes, and seconds of real time, whereas space is
measured in nodes and processors per node.

Blue Waters has two types of nodes: XE6 and XK7. These are diagramed below. The primary
difference between them is that XE6 nodes have 2 Interlagos processors, while XK7 nodes
have a single Interlagos processor in addition to an NVIDIA Kepler accelerator (or GPGPU,
General-Purpose Graphics Processing Unit, a graphics card that is generally-programmable to
do calculations traditionally performed by a CPU in a massively parallel fashion).

https://shodor.org/media/content//petascale/materials/BW2016/day02/day02-submitting-and-running.zip

When we submit a job on Blue Waters, we need to tell it how many and what kind of nodes we
need, in addition to how many integer cores we will be using.

Submitting Jobs
Submitting a job is accomplished using a command named qsub. This command allows us to
submit two different kinds of jobs: interactive jobs and batch jobs. Interactive jobs allow us to
type commands interactively in order to get our program to run. Batch jobs specify the
commands ahead of time, and the system runs them for us automatically.

A typical interactive job submission looks like the following command:

qsub
 -I
 -l nodes=<# of nodes>:ppn=<# of integer cores>:<xe or xk>
 -l walltime=<hours>:<minutes>:<seconds><ENTER>

In this command, spaces are highlighted in this color, and things to be replaced are in this color.
This indicates the enter key should be pressed: <ENTER>

Let’s break this command down into pieces:

●​ qsub is the command we are running, which allows us to submit a job to the scheduler.
●​ -I is used to indicate that this is an interactive, NOT a batch job.
●​ -l is used to indicate we are about to specify properties of the job. For example:

○​ nodes=<# of nodes>:ppn=<# of integer cores>:<xe or xk> lets us
specify how many nodes we want to use, how many integer cores per node we
want to use, and whether the type of the nodes should be xe (XE6) or xk (XK7).

○​ walltime=<hours>:<minutes>:<seconds> lets us specify the maximum
amount of time our job needs to run; after this, the scheduler will terminate our
job.

Here is an example for a job that should run on 1 XE node, use all 32 of its integer cores,
running for at most 10 minutes:

qsub -I -l nodes=1:ppn=32:xe -l walltime=00:10:00<ENTER>

Here is an example for a job that should run on 2 XK nodes, using 8 of each node’s integer
cores, running for at most 5 and a half hours:

qsub -I -l nodes=2:ppn=8:xk -l walltime=05:30:00<ENTER>

Let’s try it now using the command below. Log into Blue Waters, then run this command:

qsub -I -l nodes=2:ppn=32:xe -l walltime=00:30:00<ENTER>

Once we submit a job, it is placed in a queue, where it waits for the scheduler to allow it to start
running using the time and space requested. When we run the command to submit a job, the
output looks like the following:

qsub: waiting for job 4757284.bw to start

This shows us the ID of our job, 4757284.bw. If we want to monitor the status of this job, we
can do so by logging into Blue Waters in another window and running the following command:

qstat <ID><ENTER>

For the example shown above, we would replace <ID> with 4757284.bw. The output of the
command will look something like the following:

Job ID Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
4757284.bw STDIN aweeden 0 Q normal

This shows us a few things: the ID, which we already know is 4757284.bw, the name of the
job, which is STDIN because we are using an interactive job that will be running using the
standard input of the command line, the username of the person who submitted the job (in this
case aweeden), the amount of time the job has used so far (in this case 0 because the job has
not started yet), the status of the job (in this case Q because it is waiting in the queue. Other job
statuses we could see are R (running) or C (completed)), and the queue into which the job was
submitted (the default is normal).

If we forget the ID of our job but still want to see the status of all of our recent jobs, we can
instead run this command:

qstat -u <username><ENTER>

If we want to cancel a job that is in the queue, we can use the following command:

qdel <ID><ENTER>

Let’s practice the qdel now on the interactive job we just submitted. In the second Blue Waters
window (the one where you ran qstat), run the command below and replace <ID> with the ID
of the job you submitted:

qdel <ID><ENTER>

Run qstat to confirm the job now has a status of C, complete:

qstat <ID><ENTER>

The other window, where you typed the qsub command, may still be waiting. You can terminate
the job by entering Ctrl-C. This will prompt you with the following:

Do you wish to terminate the job and exit (y|[n])?

Type the following to terminate the job:

y<ENTER>

Using Screen
It may sometimes be the case that you will lose your network connection to Blue Waters while
you are running an interactive job. In order to get back to the job, you would have to log back in
to Blue Waters and request a new interactive job. To avoid this, there is a command you can run
called screen, which will save your current command line session such that if the session
crashes, you can resume it later. In order to use screen on the Blue Waters login nodes, we
first need to identify which login node we are connected to. This will show up in your prompt; the
login node’s hostname will start with h2ologin. Write down the number that appears after it;
this is the ID of the login node to which you are currently connected; you will need to know this
when you go to resume the screen session. Blue Waters has 4 login nodes, whose IDs range
from 0 through 3.

Once you have written down the ID of the login node, start up a screen by typing the following:

screen<ENTER>

Then, press the spacebar or the enter key.

So that you recognize the screen when you resume it later, type a message to yourself:

echo hello<ENTER>

Now, close the window, open a new window, and connect to Blue Waters.

Check your command prompt; if you are now on login node whose ID is different than the one
you wrote down, type the following command to connect to that login node, replacing <ID> with
the number you wrote down (Note: this command will only work if you have token access to BW.
Otherwise, you will have to rely on being randomly assigned the correct login node when you
SSH to bwbay):

ssh h2ologin<ID><ENTER>

Your command prompt should show that you are now on the correct login node. Type the
following command to resume the screen you started earlier:

screen -r<ENTER>

Confirm the message you sent to yourself earlier appears there; this shows us that the screen
has successfully resumed. If we want to detach from the screen but keep it running, we can type
the following command (try it now):

screen -d<ENTER>

If this worked, we will get the message [remote detached]. We can resume the screen
using the same command we used earlier:

screen -r<ENTER>

There should now be the message [15537.pts-127.h2ologin1 detached.], though the
highlighted part is likely different.

With a screen running, we can now safely request an interactive job without worrying about
having to-submit the request if we lose connection to Blue Waters. Enter the following command
to request a job running on 2 XE nodes with 32 integer cores per node for a maximum time of
30 minutes:

qsub -I -l nodes=2:ppn=32:xe -l walltime=01:45:00<ENTER>

While we wait for our interactive job to become active, let’s talk about the other way to submit
jobs on Blue Waters: using batch mode. In batch mode, a job is submitted by specifying the
parameters of the job in a file known as a batch script. Below is the syntax of a batch script
used to request a batch job using the same parameters as the interactive job we just submitted:

#!/bin/bash
#PBS -l nodes=2:ppn=32:xe
#PBS -l walltime=01:45:00

The first line indicates the location of the shell command used to read this script. Note that the
shell we are using is BASH which is NOT the same thing as batch. BASH stands for
Bourne-Again Shell and is a shell, which is used to execute Unix/Linux commands. Batch refers
to a specific kind of job that we submit to a scheduler, namely one that is not interactive.

Because the batch job is NOT interactive, once we submit the job, we are not able to execute
commands ourselves within the job. Instead, we use the script to run the commands for us. We
will return to batch jobs later.

Once our interactive job starts running, we are given an interactive shell (command line
interface) in the same window we requested the job, and we will be allowed to type commands
to run our program. Note that whereas we requested the job on a login node (its hostname
starts with h2ologin), the interactive shell is on a MOM node (its hostname starts with nid).
This MOM node is used to control programs on other nodes.

Running Programs
The way we run a program is using the aprun command. Let’s try this on a working program.
Copy the Example code (
https://shodor.org/media/content//petascale/materials/BW2016/day02/day02-submitting-and-running.zip) to Blue Waters.
There is an example executable file called test.exe, which simply reports information about
the program you run. Try running the program once to see what it does. Note: this must occur
from a MOM node; if you try to run it on a login node, it will fail; BW policy is that programs
should run on compute nodes (i.e. one starting with nid), not login nodes (i.e. ones starting with
h2ologin):

aprun ./test.exe<ENTER>
PE 0 is on core 0 on node nid01796

aprun works by assigning pieces of a running program to the integer cores on a node. These
pieces of the program are known as processing elements, or PEs. The test.exe program
tells each PE (numbered starting at 0) to print out the node and integer core (also numbered
starting at 0) on which it is run. You should notice that the ID of the node it prints out (nid01796
in the example shown above) is different than the ID of the node that appears on your prompt.
This because the ID on your prompt refers to the MOM node, which controls other nodes known
as compute nodes. The compute nodes contain the processors that actually execute your
running program using aprun.

A diagram of the PE placement we just saw is shown below. PE 0 is running on core 0 of XE
node nid01796.

https://shodor.org/media/content//petascale/materials/BW2016/day02/day02-submitting-and-running.zip

We can change the number of PEs used to run the program using the -n option to aprun. Let’s
try it now with 4 PEs:

aprun -n 4 ./test.exe<ENTER>
PE 0 is on core 0 on node nid01796
PE 1 is on core 1 on node nid01796
PE 3 is on core 3 on node nid01796
PE 2 is on core 2 on node nid01796

Note that the order in which the PEs report their status is random; all PEs are executing the
print instruction in parallel, so whichever one happens to execute it first will be the one whose
status is shown first. We can sort the output to make it easier to read:

aprun -n 4 ./test.exe|sort<ENTER>
PE 0 is on core 0 on node nid01796
PE 1 is on core 1 on node nid01796
PE 2 is on core 2 on node nid01796
PE 3 is on core 3 on node nid01796

 A diagram of this placement is shown below.

If we use aprun -n #, we would expect the first # cores on the node to each be assigned a
PE.

We can also use a “depth” parameter, -d, to specify the number of cores to assign for each PE.
For example, let’s run with 4 PEs again but assign each one 2 cores:

aprun -n 4 -d 2 ./test.exe|sort<ENTER>
PE 0 is on core 0 on node nid01796
PE 1 is on core 2 on node nid01796
PE 2 is on core 4 on node nid01796
PE 3 is on core 6 on node nid01796

A diagram of this placement is shown below.

Note that although each PE has access to 2 cores, it is only running on 1 of those cores. We
can only have each PE actually use its multiple cores if we take advantage of multi-threading,
which is a topic we will not cover in this session. Thus, for single-threaded applications, the
-d option is useful primarily to spread out the PEs, if this would be useful to a particular
application.

Thus far we have only had PEs assigned to a single node. If we want to assign PEs to multiple
nodes, we can use the -N option, which allows us to specify the number of PEs per node. Let’s
try running with 8 total PEs but with 4 PEs per node:

aprun -n 8 -N 4 ./test.exe|sort<ENTER>
PE 0 is on core 0 on node nid01796
PE 1 is on core 1 on node nid01796
PE 2 is on core 2 on node nid01796
PE 3 is on core 3 on node nid01796
PE 4 is on core 0 on node nid01797
PE 5 is on core 1 on node nid01797
PE 6 is on core 2 on node nid01797
PE 7 is on core 3 on node nid01797

Note that now we also have run on the second node, nid01797.

A diagram of this placement is shown below.

We can, of course, combine the -N and -d options, for example running with 8 PEs, 4 PEs per
node, and 2 cores per PE:

aprun -n 8 -N 4 -d 2 ./test.exe|sort<ENTER>
PE 0 is on core 0 on node nid01796
PE 1 is on core 2 on node nid01796
PE 2 is on core 4 on node nid01796
PE 3 is on core 6 on node nid01796
PE 4 is on core 0 on node nid01797
PE 5 is on core 2 on node nid01797
PE 6 is on core 4 on node nid01797
PE 7 is on core 6 on node nid01797

The placement looks like this:

If we want to assign specific PEs to specific cores, we can do this using the -cc option. We can
list out the IDs of each core, separated by commas. The PEs will assign themselves to these
cores, in order. For example:

aprun -n 4 -cc 4,11,23,28 ./test.exe|sort<ENTER>
PE 0 is on core 4 on node nid01796
PE 1 is on core 11 on node nid01796
PE 2 is on core 23 on node nid01796
PE 3 is on core 28 on node nid01796

The placement looks like this:

We can also combine -cc option with the -d and/or the -N options; for example:

aprun -n 8 -N 4 -d 2 -cc 3,9,21,30 ./test.exe|sort<ENTER>
PE 0 is on core 3 on node nid01796
PE 1 is on core 9 on node nid01796
PE 2 is on core 21 on node nid01796
PE 3 is on core 30 on node nid01796
PE 4 is on core 3 on node nid01797

PE 5 is on core 9 on node nid01797
PE 6 is on core 21 on node nid01797
PE 7 is on core 30 on node nid01797

The placement looks like this:

We can use the -S option to specify how many PEs to assign per NUMA domain. For example,
if we want to run with 4 PEs, each on its own NUMA domain, we can do the following:

aprun -n 4 -S 1 ./test.exe|sort<ENTER>
PE 0 is on core 0 on node nid01796
PE 1 is on core 8 on node nid01796
PE 2 is on core 16 on node nid01796
PE 3 is on core 24 on node nid01796

As can be seen, this placement has one PE per NUMA domain ().

We can use the -j option to specify how many PEs to assign per Bulldozer core. For example,
if we want to run with 4 PEs, each on its own Bulldozer core, we can do the following:

aprun -n 4 -j 1 ./test.exe|sort<ENTER>
PE 0 is on core 0 on node nid01796
PE 1 is on core 2 on node nid01796
PE 2 is on core 4 on node nid01796
PE 3 is on core 6 on node nid01796

As can be seen, this placement has one PE per Bulldozer core ().

In parallel computing, we usually want to measure the performance of the programs we run, i.e
how long it takes, measured in real time. Linux has a built-in command called time that can be
used in conjunction with any other command to report the number of minutes and seconds of
real time it takes to execute the command. For example, the command below will time how long
it takes to run the test.exe program with 4 PEs:

time aprun -n 4 ./test.exe|sort<ENTER>
PE 0 is on core 0 on node nid01796
PE 1 is on core 1 on node nid01796
PE 2 is on core 2 on node nid01796
PE 3 is on core 3 on node nid01796

real​ 0m2.936s
user​ 0m0.404s
sys​ 0m0.028s

Of these, the real time measures the amount of elapsed time from when the program started
running to when it finished (0 minutes and 2.936 seconds in the example shown above). user

and sys time only measure the amount of the time the program was actually using the CPU and
not idly waiting for other processes or data; this is broken into user-space time (user) and
kernel-space time (sys). When measuring performance of a program, we usually care about the
real time and not the user or sys time, since the time to solution or time to science is a
measure of how long it takes for us to get a result after we press the enter key to tell the
program to run, not how long the CPU thinks it spent actually doing work.

Batch Jobs
Let’s move into a discussion of batch jobs. You can exit your interactive session by entering
quit, exit, or Ctrl-D.

Interactive jobs are useful when we need to test or debug our programs, because this often
involves a lot of running the program, seeing what it does, changing something, running the
program again, seeing what it does, changing something, etc. We will also be using interactive
jobs throughout this 2-week institute, because we will be employing the expectation,
observation, and reflection method - identifying how we expect the model to behave,
observing how it actually behaves, and reflecting on why it behaves that way. This is a highly
interactive process. However, once it comes time to run programs automatically without needing
user intervention (saving us time to work on something else while the computer does our work
for us), we will want to submit batch jobs.

A batch job behaves very similarly to an interactive job, except it happens automatically, without
the need for user intervention. Just like with an interactive job, we need to specify what
resources are needed when we submit the job. We need to specify the number of nodes, cores,
and time needed to run the job. The main behavioral difference is that instead of us typing the
commands needed to run our programs, we specify what the commands will be ahead of time,
and the scheduler runs these commands automatically for us.

We send a batch job to the Blue Waters scheduler using a batch script. We saw an example
earlier of the syntax for specifying the resources needed for the job:

#!/bin/bash
#PBS -l nodes=2:ppn=32:xe
#PBS -l walltime=00:00:05

Note that the walltime is measuring how long the entire job will take to run. In the interactive
job we used earlier, we wanted to request enough time for us to be able to enter commands,
observe the output, reflect on what the output meant, and decide what to type next. In a batch
job, we only need to allocate enough time for the program to run by itself. Since we saw earlier
that the aprun command only took about 2 seconds to run, we can use a walltime of
00:00:05, i.e. 5 seconds, which is more than enough time for the entire job to execute.

Let’s try submitting a sample batch script. In the example code you copied to Blue Waters
earlier, there is a simple.pbs file. This contains the 3 lines of the batch job we were just
looking at. We can submit this file as a batch script by using qsub as follows (try it now):

qsub simple.pbs<ENTER>
Job submitted to account: jtp
4800977.bw

Note that the output lists the account to which this job was submitted, jtp. This is a unique
code that Blue Waters uses to identify your project. You will see a different code than jtp,
because you have an account through a different project.

Just as before, we can monitor the status of the job using qstat:

qstat <Job ID><ENTER>

or

qstat -u <your username><ENTER>

When the batch job runs, it generates an output file and an error file. The output file contains
any text that was sent to the standard output (stdout) of the Unix shell, while the error file
contains any text that was sent to the standard error (stderr) of the Unix shell.

If you enter ls in the directory where you submitted the job, you should see two files:

simple.pbs.o<Job ID>
simple.pbs.e<Job ID>

These are the default names of the files generated by the job: the name of the job (or the name
of the batch script file if no name is specified) followed by .o (for output) or .e (for error),
followed by the ID of the job. Thus, each job will have a unique pair of files that it generates.

You can view the contents of these (or any) files in multiple ways:

●​ Through a text editor like vi, emacs, or jpico.
●​ Through the less command, which lets you scroll with arrow keys, move forward one

page at a time using Ctrl-F and backward one page at a time using Ctrl-B, and quit
using q.

●​ Through the cat command, which just dumps all the contents of the file into the
terminal.

Try this now with the output file. The output should look something like this:

--
Begin Torque Prologue on nid25356
at Thu May 19 16:25:45 CDT 2016
Job Id:​ ​ ​ 4800977.bw
Username:​ ​ aweeden
Group:​ ​ ​ EOT_jtp
Job name:​ ​ simple.pbs
Requested resources:​
neednodes=2:ppn=32:xe,nodes=2:ppn=32:xe,walltime=00:00:05
Queue:​ ​ ​ normal
Account:​​ jtp
End Torque Prologue: 0.041 elapsed
--

This shows information about the job that ran. Torque is the name of the type of scheduler Blue
Waters uses; Torque manages the qsub command.

The error file should be empty.

The simple.pbs batch script requests resources, but it does not actually run any commands to
use those resources. Let’s look at the contents of the run.pbs file:

#!/bin/bash
#PBS -l nodes=2:ppn=32:xe
#PBS -l walltime=00:00:05

cd $PBS_O_WORKDIR
time aprun -n 8 -N 4 ./test.exe|sort

The first few lines of this batch script are the same as the simple.pbs batch script. Then we
have the following line, which tells the job to change directories into the same directory from
which we submitted the job.

cd $PBS_O_WORKDIR

Finally, we have the line that executes an example aprun command on our test.exe
program, sorting the output, and timing how long it takes.

Let’s submit a job using this batch script:

qsub run.pbs<ENTER>
Job submitted to account: jtp
4801046.bw

When the job finishes, the error file should be empty, and this should be the contents of the
output file (after the Torque prologue and the bit about the Application resources), noting that
the node IDs will probably be different for you:

PE 0 is on core 0 on node nid02908
PE 1 is on core 1 on node nid02908
PE 2 is on core 2 on node nid02908
PE 3 is on core 3 on node nid02908
PE 4 is on core 0 on node nid02909
PE 5 is on core 1 on node nid02909
PE 6 is on core 2 on node nid02909
PE 7 is on core 3 on node nid02909

Charging
Each research and education allocation on Blue Waters is allocated a certain number of
node-hours. This is a figure that can be calculated by multiplying the aggregate number of
nodes used for all jobs by the aggregate number of hours used for all jobs. Each time a job is
run, Blue Waters charges you for the time and space used; this gets deducted from your
node-hours count. In the case of batch jobs, you are only charged for the amount of time the job
is actually running (not while it is waiting in the queue) and for the nodes requested and
obtained by the job (even if you only use aprun on one of the nodes!). For interactive jobs, you
are also charged for the duration of the job, which also includes time you are not entering
commands. As long as the interactive shell is running, you will be charged time. Thus, it can be
more expensive to use an interactive job.

Blue Waters offers certain charging discounts if your jobs meet certain criteria. This is described
at the page linked below:

https://bluewaters.ncsa.illinois.edu/manage-news/-/blogs/charge-factor-discounts-for-jobs-on-blu
e-waters

Other options to qsub
If you want to use other parameters or options to qsub, you can do so either from the command
line (e.g. for the -q low option to change the queue used):

qsub -q low -l nodes=....

Or in the top part of a batch script using the #PBS syntax:

#PBS -q low

https://bluewaters.ncsa.illinois.edu/manage-news/-/blogs/charge-factor-discounts-for-jobs-on-blue-waters
https://bluewaters.ncsa.illinois.edu/manage-news/-/blogs/charge-factor-discounts-for-jobs-on-blue-waters

Additional Resources
●​ https://bluewaters.ncsa.illinois.edu/user-guide
●​ https://bluewaters.ncsa.illinois.edu/running-your-jobs and the menu on the left.
●​ http://hpcuniversity.org/media/TrainingMaterials/32/ABlueWatersUsageGuide.pdf
●​ https://bluewaters.ncsa.illinois.edu/manage-news/-/blogs/charge-factor-discounts-for-job

s-on-blue-waters

https://bluewaters.ncsa.illinois.edu/user-guide
https://bluewaters.ncsa.illinois.edu/running-your-jobs
http://hpcuniversity.org/media/TrainingMaterials/32/ABlueWatersUsageGuide.pdf
https://bluewaters.ncsa.illinois.edu/manage-news/-/blogs/charge-factor-discounts-for-jobs-on-blue-waters
https://bluewaters.ncsa.illinois.edu/manage-news/-/blogs/charge-factor-discounts-for-jobs-on-blue-waters

