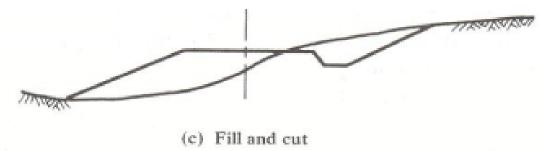
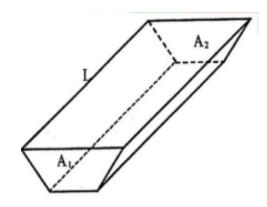


Aim: Earthwork Analysis.


Objectives: At the end of the lesson, the students should be able to:

- Discuss the methods used to achieve excavated volume calculation.
- Calculate the volumes of excavation using an appropriate method.


Calculating Earthwork Quantities

1. Cross-section Method.

- Cross-sectional land surveying is a manual approach to mapping existing and proposed terrain, involving regular measurements across the site.
- By analysing the cut and fill areas at each cross-section, and averaging these values between adjacent sections, the total cut and fill volumes can be calculated.
- This method, while labour-intensive, allows for a detailed, granular analysis of the site's topography and earthwork requirements.
- However, the trade-off is that the accuracy of the cross-section approach is inversely proportional to the spacing between measurement points - closer sections yield higher precision but take longer, while wider spacing is faster but less precise.
- The specific mathematical techniques employed are the end area method and prismoidal formula, which provide the volumetric calculations based on the cross-sectional data.

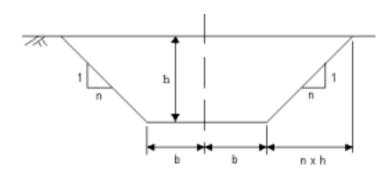
End Area Method

$$V = \left(\frac{A_1 + A_2}{2}\right). L$$

Where:

$$V = Volume$$

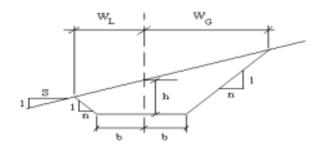
 A_1 and A_2 are the areas of the end sections


L = distance between sections

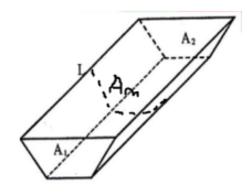
For n sections, distance L apart,

$$V = \frac{L}{2} (A_1 + A_n + 2[A_2 + A_3 + \dots + A_{n-1}])$$

For typical cut cross section shown below, the area is calculated using:


$$Area = h \cdot 2b + \frac{2nh^2}{2} = h(2b + nh)$$

For typical sloping cut cross section shown below, the area is calculated using:


$$Area = \frac{1}{2} \left(h + \frac{b}{n} \right) \left(W_L + W_G \right) - \frac{b^2}{n}$$

Where

$$W_L = \frac{S(b+nh)}{(S+n)}$$

$$W_G = \frac{S(b+nh)}{(S-n)}$$

Prismoidal Formula

$$V = \frac{\left(A_1 + 4A_m + A_2\right)}{6 \cdot L}$$

Where V is the volume and A_1 and A_2 are end areas at ends of section.

$$A_m = cross\ sectional\ area\ in\ middle\ of\ section$$

$$L = length\ from\ A_1\ to\ A_2$$

2. Contour Line or Grid Method

- The grid-based volume calculation method involves superimposing a defined matrix over the project site and determining the cut/fill requirements at each grid intersection.
- By multiplying the cut or fill depth at each grid node by the corresponding cell area, the individual volumes can be aggregated to arrive at the total earthwork quantities.
- While this manual approach allows for a granular analysis of the site's topography, it is a labour-intensive process that is less efficient than automated volume calculation techniques.
- The trade-off with the grid method is that larger grid cells require less time to process but yield lower accuracy, whereas smaller cells provide higher precision but take longer to calculate.
- As with the cross-section method, the grid-based approach represents a detailed, hands-on technique for quantifying earthwork requirements, but it is ultimately constrained by the time and effort required to implement it.

Date: 22 May 2023

Taken for:

From: Calculating the volumes of excavation

<u>Example</u>

BS	IS	FS	COLLIMATIO	Reduced level	Distance	Remarks	
			N OR HPC	(RL Top of peg)			
1.500			7.500	6.000		TBM 1; 6.000	
	1.000			6.500		Station 1A	
	2.400			5.100		Station 1B	
	3.900			3.600		Station 1C	,
	5.600			1.900		Station 1D	
	4.500			3.000		Station 1E	,
	2.500			5.000		Station 2A	
	4.300			3.200		Station 2B	
	5.500			2.000		Station 2C	
	3.500			4.000		Station 2D	
	3.700			3.800		Station 2E	
	4.500			3.000		Station 3A	

To: Booking

	Booking Checks:						
		0.002	0.002	The difference should be equal.			
				Difference between 1st & last RL			
		(1.500)	(5.998)	Difference in BS & FS,			
1.500		1.502	6.000	Sum of BS & FS			
		1.502		ok.)			
		1.502	5.998	TBM 1 (6.000 reqd., 2mm error, Therefore,			
	2.100		5.400	Station 4E			
	2.500		5.000	Station 4D			
	0.400		7.100	Station 4C			
	3.000		4.500	Station 4B			
	5.600		1.900	Station 4A			
	1.100		6.400	Station 3E			
	2.300		5.200	Station 3D			
	2.200		5.300	Station 3C			
	4.700		2.800	Station 3B			

Difference in BS – FS = Difference between 1st & last RL.

Therefore, Levels have been booked correctly

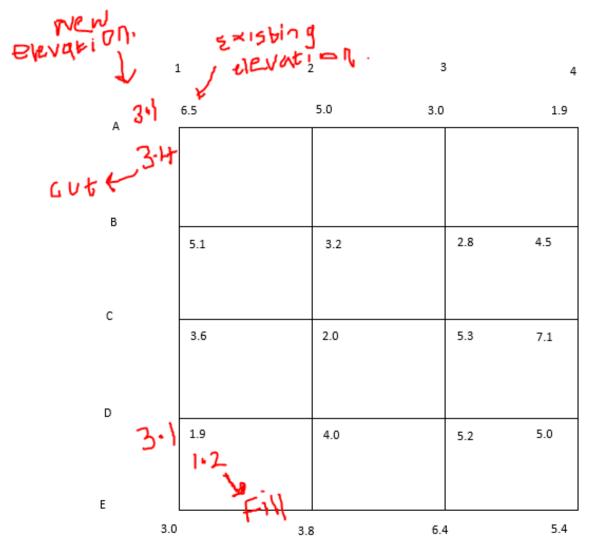
however, there is a misclosure of 2mm error.

Allowable Misclosure/Error

The allowable misclosure is,

 $\pm 5\sqrt{\textit{No of instrument setup}}$

 $\pm 5\sqrt{1}$ $\pm 5 mm > 2mm$, therefore, OK.



	1	2	3	4
А	6.5	5.0	3.0	1.9
В	5.1	3.2	2.8	4.5
С				
	3.6	2.0	5.3	7.1
D				
	1.9	4.0	5.2	5.0
Е				
	3.0	3.8	6.4	5.4

Grid size = 2 m X 2 m

Formation level/New elevation = 3.100 m

Depth cut = Existing elevation (EE) – Formation level (FL)

[Note: EE > FL]

Depth fill = Formation level – Existing elevation

[Note: FL > EE]

Frequency = Number of squares in each station.

Area constant = area of each grid = 2 m X 2 m = 4 m²

Volume of cut = Depth cut X Frequency X Area constant

Volume of fill = Depth fill X Frequency X Area constant

Use MS Excel Sheet

Station	Formation	Existing	Depth	Depth fill	Frequency	Area	Volume	Volume
	level	elevation	cut			constant	cut	fill
1A	3.1	6.5	3.4	0	1	4	13.6	0
1B	3.1	5.1	2	0	2	4	16	0
1C	3.1	3.6	0.5	0	2	4	4	0
1D	3.1	1.9	0	1.2	2	4	0	9.6
1E	3.1	3	0	0.1	1	4	0	0.4
2A	3.1	5	1.9	0	2	4	15.2	0
2B	3.1	3.2	0.1	0	4	4	1.6	0
2C	3.1	2	0	1.1	4	4	0	17.6
2D	3.1	4	0.9	0	4	4	14.4	0
2E	3.1	3.8	0.7	0	2	4	5.6	0
3A	3.1	3	0	0.1	2	4	0	0.8
3B	3.1	2.8	0	0.3	4	4	0	4.8
3C	3.1	5.3	2.2	0	4	4	35.2	0
3D	3.1	5.2	2.1	0	4	4	33.6	0

3E	3.1	6.4	3.3	0	2	4	26.4	0
4A	3.1	1.9	0	1.2	1	4	0	4.8
4B	3.1	4.5	1.4	0	2	4	11.2	0
4C	3.1	7.1	4	0	2	4	32	0
4D	3.1	5	1.9	0	2	4	15.2	0
4E	3.1	5.4	2.3	0	1	4	9.2	0
						Σ	233.2	38

Bulk cut = 233.2 m³

Bulk fill = 38.0 m^3

Dispose surplus = 195.2 m³

Self-assessment Task

Task 1

A grid size of 1.5 m X 1.5 m is set up. If the required formation level is 9.850 m, use the grid method to determine:

- a) the reduced level at each station;
- b) the total volume of cut;
- c) the total volume of fill; and
- d) the volume of earthwork quantities (dispose or import).

	А	В	 D
,		1.5 m	
1			
1	.5 m		
2			
3			

BS	IS	FS	COLLIMATION	Reduced	Remarks
			OR HPC	level (RL Top	
				of peg)	
1.863				10.000	TBM 1; 10.000
	1.765				Station 1A
	2.430				Station 1B
	1.657				Station 1C
	1.875				Station 1D
	2.130				Station 2A
	2.140				Station 2B

1.970				Station 2C		
1.430				Station 2D		
1.659				Station 3A		
1.702				Station 3B		
2.200				Station 3C		
2.268				Station 3D		
				TBM 1 (10.000		
	1.860			reqd.,mm error,		
				Therefore,		
				Sum of BS & FS		
				Difference in BS &		
				FS,		
				Difference between		
				1 st & last RL		
				The difference		
				should be equal.		
Booking	Checks:					
Therefor	e, Levels h	FS = Difference be lave been booked misclosure		RL.		
Allowabl	e Misclosu	re/Error				
	Allowable Misclosure/Error The allowable misclosure is,					
	wable misc					
<u>1</u> 5\/\text{140 c}	ij iiisti uiit	cm secup				

Station	Formation	Existing	Depth cut	Depth fill	Frequency	Area constant	Volume cut	Volume fill
	level	elevation						
1A	9.850							
1B	9.850							
1C	9.850							
1D	9.850							
2A	9.850							
2B	9.850							
2C	9.850							
2D	9.850							
3A	9.850							
3B	9.850							
3C	9.850							
3D	9.850							
						Σ		

Task 2

Discuss at least ANY TWO mathematical methods which could be adopted to calculate volume excavations.