EE 1301: Introduction to Computing Systems

loT Laboratory #2

Getting Started with Sensors and Actuators

Created by: David Orser, Kia Bazargan, and John Sartori

Many thanks to the students, teaching assistants, and faculty who work to continually improve
this document. Together, we make better labs!

Please send comments and suggestions to orser@umn.edu
Copyright 2024

mailto:orser@umn.edu

IR UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

Background

A smart device interacts with the world using Sensors and Actuators. A sensor is a component
that detects changes in the environment. A thermometer, light detector, and soil humidity
detector are all examples of sensors. An actuator is a device that can manipulate the world
around your smart device. A valve, light, motor, or display are all actuators.

Purpose

In this lab, you will familiarize yourself with the inputs and outputs available on your Photon.
Using these inputs/outputs, we will explore how your Photon can interact with the world around
it. The idea is to give you an overview of what is possible and, in turn, stimulate ideas about
what your project may contain.

Supplemental Resources

Device Description - Light Sensor (NOTE: Not yet updated for new LDR.)
Device Description - Temperature Sensor (TMP36)

Device Description - Individually Addressable LEDs (8mm WS2812B RGB LED)
Device Description - Simple Speaker (Piezo speaker)

Device Description - Servo Motor

Pre-Lab Requirements

Before coming to the lab, you should review a fair amount of reading material. Reading
materials are provided in a “Quick Lesson” format -- stand-alone documents that cover a single
topic. Please read through all the materials on the pre-lab checklist below.

Pre-Lab Checklist

Complete Homework problem 3B (Random Walk)

Read the Quick Lesson - Electrical Circuits

Read the Quick Lesson - Getting to Know Your Pins: Power Supplies, Analog, and Digital Pins
Read the SparkFun Breadboard Tutorial -

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
Read the second half of the SparkFun Tutorial - “How to read a schematic”
http://learn.sparkfun.com/tutorials/how-to-read-a-schematic#name-designators-and-values

O doodo

Reminder: If you use your breadboard space efficiently, you should never need to take apart your
breadboard. You may have a temperature sensor attached to the AO pin and the iLEDs on D4
simultaneously; the code you flash will determine what is run. There will not be a need to unplug devices
and rewire them for each new lab.

Required Components

LDR (Light Sensor) 3 Individually Addressable LEDs
220 Ohm Resistor Push button switch
4.7k Ohm Resistor Potentiometer

100k Ohm Resistor

Copyright 2024 Page 2

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://docs.google.com/document/d/1CZS5gcCSr3VjYKRbaNx_3vLojI4gn_NwTlVp8csDyis/view
https://docs.google.com/document/d/1aU-czttYtcsZGxNUK-tyo3LB-An_cs-UyPaWxzwSQwc/view
https://docs.google.com/document/d/15UqLJ_mDqQ16eRNtT0lnVlmQ6QVm4BX43DxwAUHWk1A/view
https://docs.google.com/document/d/1jHnLRkIvXFc-_g4nmLzca9y7KzvwRADfOfDVTBDKwI4/view
https://docs.google.com/document/d/1GNv1UKZ6WS397povp--wcRfwv3GLX_4uw6ghFj-yWsM/view
https://docs.google.com/document/d/1gcy0JzcDr-uhAevaMEdkpWN8f63A25CDKCGTrrW_Gpo/view
https://docs.google.com/document/d/1W_qtsQcwlq7kJlgFLXfVbQmPcH52Bx1SI5ljz6OTBdc/view
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic#name-designators-and-values

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

Lab Procedure

Exercise 1: First Sensor - Light Sensor
A light sensor can be handy for projects. For example, it can tell us when someone enters a lab
(turns on the light), when the sun shines into an office, or when a cupboard or locker is opened.

The light sensor utilized in this lab is called a light-dependent resistor or LDR. An LDR conducts
current depending on the amount of light that hits it. Since our Particle devices only measure
voltage, we use a resistor to convert the current into a voltage we can read (V=I*R). The
schematic in Figure 1 shows the sensing circuit. As light hits the photo-transistor (LDR), its
resistance decreases, causing more current to flow through resistor R3, dropping the voltage on
the sense pin A1 (more on this in EE2015!) Therefore, more light means a lower measured

voltage.

Al
i:l S'Ell 35| 37| Sél 35| 3"] }f‘I 3ZI 3']
[t (o] [@] = o [=] o (=] [=] >
W = o= = m
® 85528 5566w
T E 95 G [ER=-C RN
tRESS ERERE
c4 R3 = E B
100nF 4.7kQ ; 2
35V 0.25 wed RST LI-{GND) e
i 23v3 LT+
—— 3 MD
21 eno
— AD LI+ e
o—! a1 EN e
—l 2 Photon2 VUSB k2
o~ s D10 fmem w
4 ; 2 5
— 54 D7 ~S3
10 23 U=
—s3 D6 e -
2 NE —_—
—= mos1 D4}
— MISO D3 e
— RX [y SEE
— SCL e
—inc SDA fmm

Figure 1: Schematic diagram of the test circuit for an LDR

Testing and retrieving data from a sensor is the first task in evaluating any sensor. In the
example below, we will be using the serial port to evaluate our sensor’s response and calibrate
our final code (see “ E Quick Lesson - Power Supplies, Analog, and Digital Pins ” if the term
“serial port” seems unfamiliar).

Copyright 2024 Page 3

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://drive.google.com/open?id=1W_qtsQcwlq7kJlgFLXfVbQmPcH52Bx1SI5ljz6OTBdc&usp=drive_copy
https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

AR UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

NOTE: Many things can affect sensor readings: temperature, battery voltage, variations
between manufactured parts, and noise. These can all affect the values read by your Photon. If
you have issues later in the lab, it is a good idea to return to this step and verify that the sensor
reports the values you expect.

1) Wire up your Particle and the LDR as shown below.

&

*® e o o o

® & & & & & 9 o & 00
* ® 0 0 0 0 00 e D
* & o & o 0 " e e
® & & & & & 0 0 8 "
* & & & 0 0 0 " 0 "0
e o 9 * o o o 9 L]
* o0 L * L

Figure 2: Breadboard Layout of the test circuit for an LDR

2) Connect a USB cable from your computer to your Particle device.
3) Open the Particle Workbench IDE (VS Code)
4) Create a new project

REMEMBER: Always create a new project for each sub-section of a lab. (HINT:
CTRL-SHIFT P, “Particle: Create New Project”

REMEMBER: Set your DeviceOS and Select Photon2/P2 as your target. (HINT:
CTRL-SHIFT-P, “Particle: Configure Project for Device”)

5) Before we declare any functions, we should declare a variable (type: int) to hold our
measurement results. Do this in the global variable portion of your program.

int datao;

6) In the setup() function, setup your serial port by doing the following:

// Open the serial port for communication with the computer
Serial.begin(9600);

Copyright 2024 Page 4

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

The line above may look a little cryptic. (Where did the function Serial.begin() come from?)

Two critical points:

e The Particle IDE is designed to be a *very* user-friendly programming environment and
is designed to be used with only the Particle line of devices; as such, it can make many
assumptions. First, the serial port is always available. Second, the library (Particle.h) is
always loaded. As such, we do not need to declare “Serial” or specify its type. Just tell it
when to initialize.

e |f you want to know how a function or object (more on the difference later) operates,
“Google it""!” — “particle reference Serial”

7) The loop() function will contain the working payload of our program. First, we read from
the Analog pin into a variable (say “data®@™.)

// Read data from analog pins (returns a number from @ to 4095)
data@ = analogRead(Al);

8) Next, we print this data in a readable format to the serial port.

// Print the data to the serial port
Serial.print("My Data is: ");
Serial.print(data®);

Serial.println(";");

Heartbeat LED

A heartbeat LED allows us to visually verify that our program successfully loaded and is running
(or reloaded after a change). Adding three pieces of code to our App will allow us to implement
a heartbeat LED easily.

9) Add a heartbeat LED

a.) In setup()

// Setup D7 pin to output a heartbeat
pinMode (D7, OUTPUT);

b.) At the beginning of loop()

// Heartbeat, show we're alive
digitalWrite(D7, HIGH);
delay(250);

c.) At the end of loop()
// Heartbeat, show we're alive
digitalWrite(D7, LOW);
delay(250);

Copyright 2024 Page 5

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://docs.particle.io/reference/device-os/api/serial/

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

NOTE: The heartbeat LED can be handy when your Particle Photon behaves oddly. Try
changing the heartbeat rate of the LED significantly (i.e., change “delay(250)” to
“‘delay(1000)”) and re-flashing your Photon. You will immediately know if the code has been
updated and is running.

10) Save (CTRL-s), Compile (CTRL-SHIFT-P — Particle: Compile application (local)) , and
Flash (CTRL-SHIFT-P — Particle: Flash application (local)) your Code to your Particle
Photon.

REMEMBER: Your Photon will do nothing until it connects to WiFi! Watch the RGB LED as it
progresses through the modes. (WHITE — GREEN — Breathing CYAN). If your Photon doesn’t
breathe cyan, try to fix it yourself or talk to your instructor/TA for help.

11) When your Photon has reset and is “breathing cyan”, check the serial monitor by doing
the following:
a.) Open a Particle CLI Terminal using CTRL + SHIFT + P "Particle: Launch CLI"
b.) Type in the terminal:

particle serial monitor
NOTE: You should be in the Particle CLI rather than PowerShell, cmd, or bash.
NOTE: You can also use the “Launch CLI” button in the top right or via Particle Button.
12) Take data with the sensor to prove that it is working.

For example, position the sensor so it can see the room lights then cover and uncover
the sensor with your hand. Try using your phone flashlight to see even higher light
levels.

Condition ADC reading

Covered by your hand

Room with bright fluorescent lights

Strong Phone Light

NOTE: “ADC reading” stands for Analog to Digital Converter reading. It is a 12-bit digital
representation of the voltage on the pin A1 described the the equation:

Voltage = ADC_reading / 4095.0 * 3.3

Copyright 2024 Page 6

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://docs.particle.io/troubleshooting/led/

UNIVERSITY OF MINNESOTA

Driven to Discover®

EE 1301 loT Lab # 2

ECE Department

datae;

setup() {
.begin(9600);

pinMode(
}

,» OUTPUT);

loop() {

digitalWrite(
delay(250);

» HIGH);

data@ = analogRead(Al);

.print("My Data is:
.print(data®);
.println(";");

digitalWrite(D7,
delay(250);

LOW) ;

¥

Figure: One possible version of AnalogRead2Serial.ino

Copyright 2024

Previous Lab B EE1301 - loT - Lab1 - Introduction to Particle Photon

Page 7

B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

Exercise 2: Temperature Sensor
This time, on your own, build a serial evaluation setup for your TMP36 temperature sensor
using the schematic and example code offered in & Device Description - Temperature Sensor

WARNING: Unlike CLI Labs you can’t have multiple *.cpp files with multiple loop() and setup()
functions in the same directory. You must create a new project for each loT exercise! Feel free
to cut-n-paste the file content from your previous exercise into the new exercise.

Take some data from the sensor to prove it is working (for example, air temp and temp after
being pinched for 20 seconds).

Condition ADC reading Temp(C) Temp(F)

Room Temperature

Finger Temp

...<other>...

WARNING: Be careful not to touch the leads on the bottom of the package, as your body
resistance might alter your measurements.

Copyright 2024 Page 8

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1aU-czttYtcsZGxNUK-tyo3LB-An_cs-UyPaWxzwSQwc/view
https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

Actuators - Display Elements

So far you have worked with LEDs to display a single color. If you want to see what old-school
LEDs are capable of, check out the YouTube of CSE’s Winter Light Show. Imagine what you
could do with a lot of these!

This section will display information on external display elements connected to the Photon. The
advent of very cheap integrated circuits and new packaging technologies has allowed the
embedding of encoders and decoders directly into display elements. No longer do you need 8+
wires to communicate with a display element. It is common today to use a variation of the serial
port (2, 3, or 4 wires) utilized above to transmit configuration information (often
dozens/hundreds of variables) to external devices.

Individually Addressable LEDs

We will now look at our first complex output device (sometimes called an actuator). iLEDs stand
for individually addressable LEDs. (Adafruit's “NeoPixel” is the brand name for some of the
earliest popular iLEDs.) Every iLED can be individually set to a different color when wired up in
a chain. Each LED requires a shared power supply and ground pin. Additionally, each LED has
a Data_In and Data_Out pin. Notice the “Flat side” marked on the diagram below. You can find
this by examining the head of the bulb (or feeling with your fingers.)

I T,
It may be usaful to mark
the flat side with a small

black marker spaot,
.,

A AN BT

[Ground [+5vpam) |

iLED Pins

When iLEDs are connected in series, the first iLED in the string grabs the first 24-bits (first color
setting) and then passes the rest of the data to the next iLED down the chain, which grabs the
next 24-bits (second color setting), passing the remaining data, etc.

In this context, 24-bits means 24 ones and/or zeros. You do not need to worry about the details
of how 24 bits are represented, as there are predefined library functions that handle those
details. However, you may ask, why do we have 24 bits to represent the color? Well, each LED
internally has three small LEDs: Red, Green, and Blue. Each of these mini-LEDs can show its
color with intensity from 0 (off) to 255 (the brightest). So, if we set the Red value to 128 and the

' Remember that 8 binary digits (also called bits) are needed to represent numbers between 0 and 255.

Copyright 2024 Page 9

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://www.youtube.com/watch?v=1zJrMUFZtwI

AR UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

Green and Blue values to zero, we get a half-brightness red color. We get the brightest purple if
we set Red=255, Green=0, and Blue=255.

NOTE: These devices need a +5V power supply (on the Photon, this pin is labeled “VUSB”). For
more information, please read Quick Lesson - Power Supplies, Analog, and Digital Pins

WARNING: Plugging these LEDs in backward (even for a second) will destroy them!!!
Find the flat side before beginning wiring!

iLEDs NOTE: Manufacturers sometimes ship slightly different types of iLEDs with slightly
different signaling standards.”The lab document was written assuming WS2812B iLEDs. There
is currently no way to determine if your iLED is a WS2811, WS2812, or WS2812B simply by
looking at it. If you see strange behavior, check your wiring first. Then try to adjust the order in
which color arguments are entered. If those don’t work, consult your TA.

Exercise 3A: Build the iLED Circuit
It's now time to start wiring up your iLED.

13) Connect three iLEDs to your Photon as shown below.

Figure: iLED Wiring Diagram

NOTE: We must use either the SPI or SPI1 peripheral to control the NeoPixels. The SPI “MOSI”
pin has many names in the documentation including — Se, MO, and MOSI. See library update..

NOTE: Those looking carefully might notice that the power has not been connected to the
iLEDs. This is intentionally done to protect the LEDs while we write the code. The power
connection will be carefully added in the final steps.

NOTE: The blue ceramic capacitors on the top and bottom power rails keep the voltage
supplies stable under varying current demands, similar to how water towers keep the water
pressure constant under varying water demands. They are “good practice” but not required.

Copyright 2024 Page 10

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://docs.google.com/document/d/1W_qtsQcwlq7kJlgFLXfVbQmPcH52Bx1SI5ljz6OTBdc/edit
https://github.com/technobly/Particle-NeoPixel/commit/d0458ae6c2e87035284c115df6c6b37c4c952ea3

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

Libraries

Libraries are collections of predefined variables and functions that are commonly utilized. They
are usually maintained by companies or interested individuals. Libraries make complicated
tasks easier. In the Particle development environment, they are handled in a special way.

Exercise 3B: Writing Code for the iLED
14) Go to VS Code and create a new project
a.) Click on the “Welcome to the Particle Workbench” tab

Welcome to Particle Workbench - Ri

o Welcome to Particle Workbench X

b.) Click on “Create a Project” under the “Getting Started” section.
c.) Choose the parent folder and the name of the project.
15) Bring up the command pallet (sl N N R R (NEICN)))
16) Type “libraries” and choose “Particle: Find Libraries”
17) When asked what the library name is, type “neopixel”.

NOTE: We knew the library's search term because we looked at the manufacturer's
website and did a search for “adafruit neopixel photon” when we bought our iLEDs!

PS C:\Repos\EE1391 Photon2 Examples\PH2 ilLED veel> particle library search neopixel
Found 7 libraries matching

1.8.4 An Implementation of Adafruit's NeoPixel Library for
the Particle Core, Photon, Electron, Argon, Boron, Xenon, RedBear Duo, B SoM, B5 SoM,
E SoM X, P2, Photon 2, and Tracker

In the list of found libraries, the first item is called “neopixel,” and the description shows
that it is [verified] and compatible with Photon.

18) Bring up the command pallet again, and this time use “Particle: Install Library”.
19) Enter “neopixel” without the quotation marks as the library name.

Copyright 2024 Page 11

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://community.particle.io/t/neopixel-support-on-the-p2-and-photon-2/64580

M UNIVERSITY OF MINNESOTA EE 1301 |OT Lab # 2

Driven to Discover®

ECE Department

20) Notice that a new item called “lib” was added to your project:
File Edit Selection Wiew Go Debug Terminal
EXPLORER
“ OPEN EDITORS
x @ Welcome to Particle Workbench

project.properties
“ RGB_LED

RGBE_LED.ino
project.properties
README.md

“ DJO_GETTINGSTARTED_ V001

21) Click the arrow n next to lib, you will notice subdirectories for “examples” and “src”.
The src directory contains the source code for controlling the “neopixel” color LED.
22) Look through the examples directories and look at a couple of the *.cpp files. You may

see the following lines. These lines are necessary to integrate the neopixel library with

your code.

#include "Particle.h"
#include "neopixel.h"

23) Add these lines to the top of your source file (the one created when you created your

new project, something like:
“djo_TestNeoPixel _v001.ino”).

24) If you see a red underline beneath “neopixel.h”
close and re-open VS Code.

Object Models

Going into detail on object-oriented programming is beyond the scope of this document (but will
be covered in detail later in EE1301.) It is sufficient to understand that a class is another data
type in C++ programming (just like an int, a bool, etc., but a bit more complex because it holds
both values AND actions/functions to be taken on those values). The internal actions/functions
of an object are sometimes called methods. An object is a single instance of a class.?

We will need some basic information to create and set up our NeoPixel object:

e The number of pixels (3) in the chain
e The pin number (SPI) to which the string of pixels is attached

2 Generally speaking you can have many objects of one class in a program. For example, if you had
multiple iLED strips you needed to control, each with a different pin, number of LEDs, color pattern, etc.

Copyright 2024

Page 12

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

e The type of controller chip (WS2812) (see https://www.adafruit.com/products/1734)

Exercise 3C: Creating a NeoPixel Object and Using it

You can then create a new NeoPixel object similar to how we declare a new integer, except we
use a function to fill the object with its initialization data. The ints/defines below are used for
better readability when we declare the new NeoPixel object below. Note that we will give you
code pieces in the next few sections. You have to put these together for the code to work.

25) Insert the following code above setup(), in the Global declarations section.

// These lines of code should appear AFTER the #include statements, and before

// the setup() function.

// IMPORTANT: Set pixel COUNT, PIN and TYPE

int PIXEL_COUNT = 3;

#define PIXEL_PIN SPI // Only use SPI or SPI1 on Photon 2 (SPI is MO or SO pin; SPI1 is D2)
// NOTE: On the Photon 2, this must be a compiler constant!

int PIXEL_TYPE = WS2812;

Adafruit_NeoPixel strip = Adafruit_NeoPixel(PIXEL_COUNT, PIXEL_PIN, PIXEL_TYPE);

This creates “strip”, an gbject based on the “Adafruit_NeoPixel” class, which is defined in the
“NeoPixel” library (Confused yet? Hold onto your shorts...)

“

As you saw with Serial, in C++ (and many other programming Think of methods
languages), we access the methods of an object with the syntax simply as functions.
“object.method()”. To initialize the strip, we call the method
“strip.begin ()”. We only need to do this once, so the best place is in our Photon code's
setup() function.

"y

26) Insert the following code in setup()

void setup() {

strip.begin();

Finally, we have declared and initialized our object; we’re ready to use it to do something useful!
We will use three methods from the Adafruit_NeoPixel class of objects. The table below defines
these methods.

Copyright 2024 Page 13

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://www.adafruit.com/products/1734

UNIVERSITY OF MINNESOTA

Driven to Discover®

EE 1301 loT Lab # 2

ECE Department

Method (Function) Definition

Description

void = strip.setPixelColor(<uint16>,<uint32>)?
Example:
strip.setPixelColor(PixelID, myColor)

Store the Color for the n-th PixellD (zero-indexed) in
memory. PixellD refers to the n-th physical LED in
the chain of serially connected LEDs. The LEDs do
not light up yet (see the last row).

<uint32_t> = strip.Color(<uint8>,<uint8>,<uint8>)
Examples:

myColor2 = strip.Color(255,0,0)

myColor = strip.Color(Red,Green,Blue) // RGB Order
/] *% Or *®%x

myColor = strip.Color(Green,Red,Blue) // GRB Order

Returns an encoded color representing the RGB
values that neoPixel can use. In the second
example, Red, Green, and Blue are variables
specifying an intensity between 0 and 255.

NOTE: Some neopixels specify the color values in
the G,R,B order instead of R,G,B order

void = strip.show()
Example:
strip.show()

Sends the colors stored in memory to the physical
LED strip in single burst transmission. This
statement causes the lights to change color!

We will define some colors and store the desired data in the strip object. Once everything is set,
we’'ll call the show() method to dump the data over the digital data link to the string of pixels. If
you forget to use the show() method, the iLEDs will NOT change colors.

27) Insert the following code in loop()

Loop() Example Code

void loop() {

out which type you have? */

/* NOTE: Two versions of the neopixel exist.
The only difference is the order the colors are specified.

//Setup some colors,
int PixelColorCyan =
int PixelColorRed =
int PixelColorGold =
//Setup some colors,
/*

int PixelColorCyan =
int PixelColorRed =
int PixelColorGold =

RGB version
strip.Color(O, 100,
strip.Color(80, 0,
strip.Color(60, 50,
GRB version

strip.Color(100, 0,
strip.Color(©, 80,
strip.Color(50, 60,

RGB versions and GRB versions.
Can you figure

100);
9);
5);

100);
0);
5);

*/

//Set first pixel to cyan
strip.setPixelColor(@, PixelColorCyan);
//set second pixel to red
strip.setPixelColor(1, PixelColorRed);

® You can actually see the definition of this method in the file “neopixel.c” on line 699. Opening the library
definitions is a useful place to look if you need to figure out how an undocumented library function works.

Copyright 2024 Page 14

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

AR UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

//set third pixel to Gopher Gold!
strip.setPixelColor(2, PixelColorGold);
strip.show();

delay(1000); //wait 1sec

//flip the red and gold
strip.setPixelColor(@, PixelColorCyan);
strip.setPixelColor(1l, PixelColorGold);
strip.setPixelColor(2, PixelColorRed);
strip.show();

delay(1000); //wait 1sec

28) Verify and flash your code to your Photon.
29) Add a 220 Ohm “Protection Resistor” to your iLEDs, as shown below:

Figure: iLED Wiring Diagram (with Protection Resistor)

w8

—

................. ‘n'::.

30) Check that the LEDs function as intended.

e
i o i

31) Finally, when your circuit generates colors, replace the “protection resistor” with a wire to
fix any flickering issues, as shown below.

Figure: iLED Wiring Diagram (no Protection Resistor)

Copyright 2024 Page 15

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

32) Show your iLEDs to your TA and make any modifications to the colors they request.

HINT: You should be able to change one of the LEDs to green. This will require
understanding color order (hints in blue above.)

IMPORTANT: NeoPixels hold their color settings until the next call to the show() method. There
is no need to continuously update them.

Exercise 4
Based on the circuit you built in Exercise 3, finish either Ex4A or Ex4B below.

Exercise 4A: Changing Brightness in Steps of 50

Now, change the program so that the first LED shows red, the second green, and the third blue.
We want all three to start with a light intensity of 0. After a second, all three change intensity to
50, then 100, 150, 200, 250, and back to 0. Repeating forever.

(VERY STRONG HINT: Do not use the pixel.setBrightness () function. It is not intended for this
purpose and will likely break and/or confuse you later.)

REMEMBER: Create a new project for each loT exercise! When you do so, reselect
“DeviceOS@5.8.0” and “Photon 2 / P27, plus you'll need to reinstall the “neopixel” library (and
potentially re-add the line #include “neopixel.h”)

Exercise 4B: Flickering Candle Exercise

Copy your HW3 function “int randWalk (int oldValue, int updateSize) ;“toVS
Code. Use it to set the brightness of your LED(s). Try making all three flicker with the same
brightness. Play with the updateSize to create different effects. Try making all three flicker
independently (they will each have a separate “oldValue” and call randWalk() separately.)

Exercise 5: Sensors - Human Input Devices
Accepting input from a human being is a valuable feature for

microcontrollers. While this can appear to be a simple task, several w3

pitfalls exist. We will start by setting up a single push button and

potentiometer (knob) as input devices. . Push
,-'"'_"_I

The push button is a normally open momentary switch; this means \i,f'

that if we tie one terminal of the push button to 3V3 and the other
terminal to an input of the Photon set to “INPUT_PULLDOWN?” it
results in the circuit on the right. When the button is “not pushed”, it
results in the Photon’s internal “pulldown” resistor pulling the input to
ground, 0.0V, or a “low” state. Think of this as a default state. The
input gets connected to 3V3 with a low resistance when the button is -

D3 External Circuit

Photon

Copyright 2024 Page 16

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use#:~:text=intended%20to%20be%20called%20once%2C%20in%20setup()
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use#:~:text=intended%20to%20be%20called%20once%2C%20in%20setup()

Driven to Discover®

AR UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

pushed. The resistors have a tug of war, and the lower resistance path wins, pulling the input to
3.3V or a “high” state.

The potentiometer (“pot” for short) is a three-terminal device. It is implemented physically as a
long resistor with a contact on each end (terminals 1 and 3) and a “swiper” that can contact
anywhere in between (terminal 2). When the two fixed terminals are connected to the power
rails (GND and 3V3), the “swiper” terminal will output a voltage between 0.0V and 3.3V,
depending on the position of the swiper. This can easily be wired into an analog input terminal
that samples the voltage value.

33) Wire up a push button and a potentiometer as described above and shown in the
following circuit:

e |-
[T

Photon2

SESAAANS

We now have two inputs. Note that the pushbutton provides a digital input (D3) and the
potentiometer provides an analog input (A2). We want to sample the states of those inputs and
then output them to the serial port for debugging purposes.

The following code shows one way to do this:

int ButtonPIN = D3;
int PotPIN = A2;

int PotOut = 0;
bool ButtonOut = FALSE;
int ButtonCount = 0;

void setup() {
pinMode (ButtonPIN, INPUT_PULLDOWN);
pinMode(PotPIN, INPUT);
Serial.begin(9600);

Copyright 2024 Page 17

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

void loop() {
ButtonOut = digitalRead(ButtonPIN);
PotOut = analogRead(PotPIN);

if(ButtonOut == HIGH) {
ButtonCount = ButtonCount + 1;

Serial.print("Button Count = ");
Serial.print(ButtonCount);
Serial.print(" , Level = ");
Serial.println(PotOut);

You have now created a bunch of Photon programs (create new project, add lines of code to the
globals, setup(), and loop().) Please continue to take these steps even if you are not prompted.

34) Write a program using the button/potentiometer code example above. Compile, Flash it.

35) Connect to the Photon with your terminal program (HINT: “particle serial monitor”).

36) Press the button a couple of times, turn the potentiometer, and press the button again.
You should notice a couple of things immediately. Continue reading below.

Events vs. State

You may have noticed that pressing the button once may result in reporting more than one
button count. In fact, the number of button counts depends on the speed of your microcontroller,
how quick your fingers are, and the complexity of the code being run (not good things!).

In our case, we are interested in the event “Button is pushed,” not the current state of the button
“‘Down.” Inherently the event “Button is pushed” requires knowledge of two pieces of information
-- the previous state of the button “Up” and the current state of the button “Down.” We can build
code to capture and build on these pieces of information. For example:

ButtonNow = digitalRead(ButtonPIN);
if(ButtonNow == HIGH && ButtonLast == LOW) {
//Do our work here;
ButtonLast = HIGH;

} else if (ButtonNow == LOW) {
ButtonLast = LOW;

}

Copyright 2024 Page 18

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

37) Finally, to complete Exercise 5, modify your code to only send information to the serial
port once per button press. Show your working project to your TA.

Debouncing

Often, the human interface is made more complex because the physical buttons actually
“bounce” several times before settling on a steady output value (see oscilloscope output on the
right, which shows the voltage sampled from a button when pressed.) This can result in
detecting multiple button presses for a single press or an artificial button press when the button
is released. Usually, this bouncing lasts less than 2ms (but can sometimes last 10s of
milliseconds).

The maximum execution rate of the loop function for a Photon device is 1 ms. This can mask
bouncing effects very nicely. Unfortunately, this can sometimes result in a false sense of
security. You can ignore debouncing as long as your App doesn’t:

Use a switch other than the PCB mount momentary switch supplied by the ECE Depot
Operate on the “release” of the PCB mount switch rather than the “press”

Sample the same input multiple times in a single loop() function

Operate your Photon in SYSTEM_MODE(MANUAL)

Exercise 6: Micro Project

Read through the device descriptions for the Speaker and the Servo Motor. Using what you've
learned in this lab, write an app that senses something (a button, pot, temp, light, etc.) and
somehow responds (speaker, servo, led, etc.). Use any of the actuators in this lab or devices
you have figured out independently. A couple of examples of potential micro-projects are:

e Automated Light: Light level rises — Turn off an LED lamp
e Automated Fan: Temperature rises — Turn on a fan
e Music Box: Press a button — play a song or multi-tone siren

While the choice of a specific micro project you do for this section of the lab is up to you, a
couple of concepts are useful for embedded systems design. Now is potentially a good time to
read Quick Lesson - Programming Constructs. Take a look and see if it is relevant to you.

Lab Report

You are required to submit a written report on
your Micro Project. This is only Exercise 6 Tekfn __ Tig? _ ! : : . MoiseFiter 0f
and is the open-ended part of this lab. Your U P U P
report should contain your well-commented
code and a brief (no more than half a page)
description of your project.

Be prepared to discuss the following:

Copyright 2024 Page 19

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://docs.google.com/a/orser.org/document/d/19NTXZBiam6b-_-CpKx3jSh8AlfjAL-ajehJs5jZfqts/edit?usp=sharing

UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

e Your experience with each device (sensors, actuators) that you connected.

o Did it work the first time you connected and programmed it? What mistakes did
you make? How did you resolve any issues? If you didn’t have any issues, just
say so.

o Include the relevant code you used to get it to work. When describing code, it is
essential to break it into sections and explain how and why you chose the
particular implementation you used.

o For the sensors, include the table that shows the ADC (analog read) values
under different conditions.

No submission is necessary for the other exercises, but the Lab TA must see a demo of your
circuits. Make sure s/he checks off your work before you leave the lab (or set up a time outside
the lab to demo if you don’t have time to finish).

Copyright 2024 Page 20

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

AR UNIVERSITY OF MINNESOTA EE 1301 loT Lab # 2 ECE Department

Driven to Discover®

Appendix - Photon 2 Pinout Diagram

Many pins in the Photon can be utilized in various ways. The following pin diagram may be
useful when deciding which outputs to use on a project.

2a0W

A

CNHd-LETBE 231
12114 vd

CNHd-IW3IYE 03I 234
BHEOMEIZOZHEd NS

(was)=ma { &v | oa |

I (50w TH cos) eom [e 1]

MEaUsEEp- - UoIou -V SeeselEp/aousielal ol S ed Sa0p, [50Ny U0 PIsSEq oM sapealag

Copyright 2024 Page 21

Previous Lab B EE1301 - |oT - Lab1 - Introduction to Particle Photon B EE1301 - loT - Lab3 - Internet Connectivity Next Lab

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

	EE 1301: Introduction to Computing Systems
	Please send comments and suggestions to orser@umn.edu
	Background
	Purpose
	Supplemental Resources
	Pre-Lab Requirements
	Required Components

	Lab Procedure
	Exercise 1: First Sensor - Light Sensor
	Heartbeat LED

	Exercise 2: Temperature Sensor
	Actuators - Display Elements
	Individually Addressable LEDs
	Exercise 3A: Build the iLED Circuit
	Libraries

	Exercise 3B: Writing Code for the iLED
	Object Models

	Exercise 3C: Creating a NeoPixel Object and Using it
	Loop() Example Code

	Exercise 4
	Exercise 4A: Changing Brightness in Steps of 50
	Exercise 4B: Flickering Candle Exercise
	Exercise 5: Sensors - Human Input Devices
	Events vs. State

	Debouncing

	Exercise 6: Micro Project
	Lab Report
	Appendix - Photon 2 Pinout Diagram

