
EE 1301: Introduction to Computing Systems

IoT Laboratory #2

Getting Started with Sensors and Actuators

Created by: David Orser, Kia Bazargan, and John Sartori

Many thanks to the students, teaching assistants, and faculty that work to continually improve
this document. Together we make better labs!

Please send comments and suggestions to orser@umn.edu
Copyright 2018

mailto:orser@umn.edu

EE 1301 IoT Lab # 2 ECE Department

Background

A smart device interacts with the world using Sensors and Actuators. A sensor is a component
that detects changes in the environment. A thermometer, light detector, and soil humidity
detector are all examples of sensors. An actuator is a device that can manipulate the world
around your smart device. A valve, light, motor, or display are all actuators.

Purpose

In this lab, you will familiarize yourself with the inputs and outputs available on your Photon.
Using these inputs/outputs we will explore how your Photon can interact with the world around
it. The idea is to give you an overview of what is possible, and in turn, to stimulate ideas on what
your project may contain.

Supplemental Resources

Device Description - Light Sensor (NOTE: Not yet updated for new LDR.)
https://docs.google.com/document/d/1CZS5gcCSr3VjYKRbaNx_3vLojI4gn_NwTlVp8csDyis/export?format=pdf

Device Description - Temperature Sensor (TMP36)
https://docs.google.com/document/d/1aU-czttYtcsZGxNUK-tyo3LB-An_cs-UyPaWxzwSQwc/export?format=pdf

Device Description - Individually Addressable LEDs (8mm WS2811 RGB LED)
https://docs.google.com/document/d/15UqLJ_mDqQ16eRNtT0lnVlmQ6QVm4BX43DxwAUHWk1A/export?format=pdf

Device Description - Simple Speaker (Piezo speaker)
https://docs.google.com/document/d/1jHnLRkIvXFc-_g4nmLzca9y7KzvwRADfOfDVTBDKwI4/export?format=pdf

Device Description - Servo Motor

Pre-Lab Requirements

Before coming to the lab, there is a fair amount of reading material you should review. Reading
materials are provided in a “Quick Lesson” format -- stand-alone documents that cover a single
topic. Please read through all the materials on the pre-lab checklist below.

Pre-Lab Checklist
❏ Complete Homework problem 3B
❏ Read the Quick Lesson - Electrical Circuits
❏ Read the Quick Lesson - Getting to Know Your Pins: Power Supplies, Analog, and

Digital Pins
❏ Read the SparkFun Breadboard Tutorial -

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard(𝐴𝐷𝐶 − 620)flat
❏ Read the second half of the SparkFun Tutorial - “How to read a schematic”

http://learn.sparkfun.com/tutorials/how-to-read-a-schematic#name-designators-and-values

Reminder: If you use your space efficiently, you should never need to take apart your breadboard. You
may have a temperature sensor attached to the A0 pin and the ILED’s on D4 at the same time and the
different code you flash will determine what is run. There will not be a need to unplug devices and rewire
it for each new lab.

Copyright 2022 Page 2
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://docs.google.com/document/d/1CZS5gcCSr3VjYKRbaNx_3vLojI4gn_NwTlVp8csDyis/export?format=pdf
https://docs.google.com/document/d/1CZS5gcCSr3VjYKRbaNx_3vLojI4gn_NwTlVp8csDyis/export?format=pdf
https://docs.google.com/document/d/1aU-czttYtcsZGxNUK-tyo3LB-An_cs-UyPaWxzwSQwc/export?format=pdf
https://docs.google.com/document/d/1aU-czttYtcsZGxNUK-tyo3LB-An_cs-UyPaWxzwSQwc/export?format=pdf
https://docs.google.com/document/d/15UqLJ_mDqQ16eRNtT0lnVlmQ6QVm4BX43DxwAUHWk1A/export?format=pdf
https://docs.google.com/document/d/15UqLJ_mDqQ16eRNtT0lnVlmQ6QVm4BX43DxwAUHWk1A/export?format=pdf
https://docs.google.com/document/d/1jHnLRkIvXFc-_g4nmLzca9y7KzvwRADfOfDVTBDKwI4/export?format=pdf
https://docs.google.com/document/d/1jHnLRkIvXFc-_g4nmLzca9y7KzvwRADfOfDVTBDKwI4/export?format=pdf
https://docs.google.com/document/d/1GNv1UKZ6WS397povp--wcRfwv3GLX_4uw6ghFj-yWsM/export?format=pdf
https://docs.google.com/document/d/1gcy0JzcDr-uhAevaMEdkpWN8f63A25CDKCGTrrW_Gpo/export?format=pdf
https://docs.google.com/document/d/1W_qtsQcwlq7kJlgFLXfVbQmPcH52Bx1SI5ljz6OTBdc/export?format=pdf
https://docs.google.com/document/d/1W_qtsQcwlq7kJlgFLXfVbQmPcH52Bx1SI5ljz6OTBdc/export?format=pdf
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic#name-designators-and-values

EE 1301 IoT Lab # 2 ECE Department

Required Components:

LDR (Light Sensor)
200 Ohm Resistor
4.7k Ohm Resistor
100k Ohm Resistor

3 Individually Addressable LEDs (WS2811s)
Push button switch
Potentiometer

Lab Procedure

Exercise 1: First Sensor - Light Sensor

A light sensor can be very useful for projects. For example, a light sensor can tell us when
someone enters a lab (turns on the light), when the sun shines into an office, or when a
cupboard or locker is opened.

The light sensor utilized in this lab is called a light-dependent resistor or LDR. An LDR conducts
current depending on the amount of light that hits it. Since our Particle devices only measure
voltage, we use a resistor to convert the current into a voltage that we can read (V=I*R). The
schematic in Figure 1 shows the sensing circuit. As light hits the photo-transistor (LDR), it is
converted into current. The current flows through resistor R1, dropping the voltage on the sense
pin A1. Therefore, more light means a lower measured voltage.

Figure 1: Schematic diagram of the test circuit for an LDR

Copyright 2022 Page 3
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

Testing and retrieving data from a sensor is the
first task in evaluating a sensor. In the example
below, we will be using the serial port to evaluate
our sensor’s response and calibrate our final
code (see “Quick Lesson - Power Supplies,
Analog, and Digital Pins” if the term “serial port”
seems unfamiliar).

Procedure

1) Wire up your Particle and the LDR as shown below.

Figure 2: Breadboard Layout of the test circuit for an LDR

2) Connect a USB cable from your computer to your Particle device.
3) Open the Particle Workbench IDE (VS Code) and create a new project.
4) Before we declare any functions, we should declare a variable (type: int) to hold the

results of our measurement.

int data0;

5) In the setup() function, we first need to set up the serial port.

// Open the serial port for communication with the computer
Serial.begin(9600);

Copyright 2022 Page 4
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

Note: The line above may look a little cryptic. (Where did the function Serial.begin() come from?)
The Particle IDE is designed to be a *very* user-friendly programming environment and is only
designed to be used with the Particle line of devices; as such, it makes many assumptions. Two
of these assumptions are that the serial port is always available, and the library is always
pre-loaded by the compiler. As such, we do not need to declare “Serial” or specify its type, just
initialize it.

6) The loop() function will contain the working payload of our program. First, we read from
the Analog pin into the variable data0.

// Read data from analog pins (returns a number from 0 to 4095)
data0 = analogRead(A1);

7) Next, we print this data in a readable format to the serial port.

// Print the data to the serial port
Serial.print("My Data is: ");
Serial.print(data0);
Serial.println(";");

8) Add a heartbeat LED
A heartbeat LED is a useful construct to verify that our program has successfully loaded (or
reloaded after a change). Adding three pieces of code to our App will allow us to implement a
heartbeat LED easily.

a.) In setup()

// Setup D7 pin to output a heartbeat
pinMode(D7, OUTPUT);

b.) At the beginning of loop()

// Heartbeat, show we're alive
digitalWrite(D7, HIGH);
delay(250);

c.) At the end of loop()

// Heartbeat, show we're alive
digitalWrite(D7, LOW);
delay(250);

Note: When your Particle Photon is behaving oddly, the heartbeat LED can be very useful. Try
changing the heartbeat rate of the LED significantly and re-flashing your Photon. You will
immediately know if the code has been updated and is running.

9) Save, Verify, and Flash your Code to your Particle Photon.

Copyright 2022 Page 5
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

10) When your Photon has reset and is “breathing cyan”, check the serial monitor by doing
the following:

a.) Open a Particle CLI Terminal using CTRL + SHIFT + P "Particle: Launch CLI"
b.) Type in the terminal:

particle serial monitor
NOTE: You should be in the Particle CLI rather than PowerShell, cmd, or bash.
NOTE: You can also use the “Launch CLI” button in the top right or via Particle Button.

11) Take data with the sensor to prove that it is working.

For example: position the sensor so it can see the room lights then cover and uncover
the sensor with your hand. Try using your phone flashlight to see even higher light
levels.

Condition ADC reading

Covered by your hand

Room with bright fluorescent lights

…

Strong Phone Light

Copyright 2022 Page 6
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

Figure: One possible version of AnalogRead2Serial.ino

Copyright 2022 Page 7
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

Exercise 2: Temperature Sensor

This time, on your own, build a serial evaluation setup for your TMP36 temperature sensor
using the schematic and example code offered in Device Description - Temperature Sensor

Take some data from the sensor to prove that it is working (for example, air temp and temp after
being pinched for 20 seconds). Note: Be careful not to touch the leads on the bottom of the
package as your body impedance might alter your measurements.

Condition ADC reading

Room Temperature

Finger Temp

…<other>...

Actuators - Display Elements

In this section, we’ll display some information on external display elements connected to the
microcontroller. The advent of very cheap integrated circuits and new packaging technologies
has allowed the embedding of encoders and decoders directly into display elements. No longer
do you need 8+ wires to communicate in a very basic way with a display. It is common today to
use a variation of the serial port (4 wires) utilized above to transmit configuration information
(often dozens of variables) to external devices.

Individually Addressable LEDs

We will now look at our first complex output device (sometimes called an actuator). iLEDs, RGB
LEDs, or NeoPixels are part of a class of devices that are called individually addressable. This
means that when wired up in a chain, every LED can be individually set to a different color. Each
LED requires a shared power supply and ground pin. Additionally, each LED has a Data_In and
Data_Out pin. When connected in series, the first LED in the string grabs the first 24-bits (color
setting) and then passes the rest of the data to the next LED down the chain, which grabs the
next 24-bits (second color setting), passing the remaining data, etc. In this context, 24-bits
means 24 ones and/or zeros. You do not need to worry about the details of how 24 bits are
represented, as there are predefined library functions that handle those details. But why do we
have 24 bits to represent the color? Well, each LED internally has three small LEDs: Red,
Green, and Blue. Each of these mini-LEDs can show its color with intensity from 0 (off) to 255
(the brightest) . So, if I set the Red value to 128 and the Green and Blue values to zero, I get a1

halfway bright red color. If I set Red=255, Green=0, and Blue=255, I get the brightest purple.

1 Remember that 8 binary digits (also called bits) are needed to represent numbers between 0 and 255.

Copyright 2022 Page 8
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1aU-czttYtcsZGxNUK-tyo3LB-An_cs-UyPaWxzwSQwc/view
https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

If you want to see what regular LEDs are capable of, check out the YouTube of CSE’s Winter
Light Show. Imagine what you could do with an RGB LED!
https://www.youtube.com/watch?v=HkN5-Qfiy7s
https://www.youtube.com/watch?v=1zJrMUFZtwI

iLED Pin Description

NOTE: These devices need a +5V power supply (on the Photon this pin is labeled “VIN”). For
more information, please read Quick Lesson - Power Supplies, Analog, and Digital Pins

WARNING: Plugging these LEDs in backward (even for a second) will destroy them!!!

WS2811 vs WS2812 NOTE: This year, the Depot ordered two different types of neopixels, and
unfortunately, they have slightly different “signaling standards.” The lab document was written
assuming a WS2811 neopixel, and notes have been added below describing what to change if
you have WS2812 neopixels in your kit. There is currently no way to determine if your NeoPixel
is a WS2811 or WS2812. If you see strange behavior, please try changing the signaling
standard. If that doesn’t work, consult your TA.

Exercise 3---Step1: Build the iLED Circuit

For now, wire up your LEDs as follows. Do not connect the circuit to power until you have
finished reading this paragraph in its entirety! After you are done wiring it up, double check
to see that all iLEDs have their flat sides to the left. Connecting the circuit to a power source
(USB port of your computer, or a USB adaptor plugged into the power outlet) would result in all
three iLEDs turning on with a default blue color. So, if you connect the power and one or more
of them do not light up, it means you have not wired up the circuit correctly and you might burn
the iLEDs if you keep the circuit connected to the power. Disconnect power immediately and
have someone (or yourself) check your wiring. If all three light up blue, then your circuit is
probably OK. Disconnect the power and move on to the next step.
WS2812 NOTE: The WS2811 neopixels may not turn on to a default blue color and may only
power up once you upload code to your board to enable them.

Copyright 2022 Page 9
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://www.youtube.com/watch?v=HkN5-Qfiy7s
https://www.youtube.com/watch?v=HkN5-Qfiy7s
https://www.youtube.com/watch?v=1zJrMUFZtwI
https://docs.google.com/document/d/1W_qtsQcwlq7kJlgFLXfVbQmPcH52Bx1SI5ljz6OTBdc/edit

EE 1301 IoT Lab # 2 ECE Department

Figure: iLED Wiring Diagram

Note: The resistor at the bottom-left corner of the circuit above is only used for protecting your
iLEDs, in case you connect them in reverse. The resistor causes the iLEDs to flicker. Once you
write the program to light up the iLEDs with different colors (next section) and verify that
your circuit generates the expected colors, you can replace the “protection resistor” with
a wire and fix the flickering issue. (If your lab kit doesn’t have a 100 Ohm resistor use a 220
Ohm resistor.)

Note: The blue ceramic capacitors on the top and bottom power rails are there to keep the
voltage supplies stable under varying demand for current, similar to how water towers keep the
water pressure constant under varying demand for water.

Libraries

Libraries are collections of predefined variables and functions that are commonly utilized. They
are usually maintained by companies or interested individuals. They make complicated tasks
easier. In the Particle development environment, they are handled in a special way.

Exercise 3---Step2: Writing Code for the iLED

1) Go to VS Code and create a new project

Copyright 2022 Page 10
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

a.) Click on the “Welcome to the Particle Workbench” tab

b.) Click on “Create a Project” under the “Getting Started” section.
c.) Choose the parent folder and the name of the project.

2) Bring up the command pallet (⇧⌃P (Windows, Linux) | ⇧⌘P (macOS))
3) Type “libraries” and choose “Particle: Find Libraries”
4) When asked what the library name is, type “neopixel”. When we bought the iLED, its

manual said we could use it with the neopixel library. That’s how we knew what library to
search for.

5) You can see that in the list of found libraries, the first item is called “neopixel”, and the
description shows that it is [verified] and compatible with Photon.

6) Bring up the command pallet again, and this time use “Particle: Install Library”.
7) Enter “neopixel” without the quotation marks as the library name.
8) Notice that a new item called “lib” was added to your project:

9) If you click on the arrow next to lib, you will notice subdirectories for “examples” and
“src”. The src directory contains the source code for controlling the “neopixel” color LED.

10) Look through the examples directories and look at a couple of the *.cpp files. You may
see the following lines. These lines are necessary to integrate the neopixel library with
your code.

#include "Particle.h"

#include "neopixel.h"

Copyright 2022 Page 11
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

11) Add these lines to the top of your source file (the one that was originally created when
you created your new project, something like:
“djo_TestNeoPixel_v001.ino”).

12) If you see a red underline beneath “neopixel.h”
close and re-open VS Code.

Object Models

Going into detail on object-oriented programming is beyond the scope of this document. It is
sufficient to understand that a class is another data type in C++ programming (just like an int, a
bool, etc., but a bit more complex, in the sense that it holds both values AND actions to be taken
on those values). The internal actions/functions of an object are sometimes called methods. An
object is an instance of a class.2

We will need some basic information in order to create and set up our NeoPixel object:
● The pin number (D4) to which the string of pixels is attached
● The number of pixels (3) in the chain
● The type of controller chip (WS2811, https://www.adafruit.com/products/1734)

○ WS2812 NOTE: If you have WS2812 neopixels in your kit, you will use WS2812
as the type of controller chip.

Exercise 3---Step3: Creating a NeoPixel Object and Using it

You can then create a new NeoPixel object similar to how we declare a new integer, except we
use a function to fill the object with its initialization data. The int variables defined below are
used for better readability when we instantiate the new NeoPixel object below. Note that in the
next few sections, we are giving you pieces of the code. You have to put together these pieces
for the code to work.

Adafruit_NeoPixel strip = Adafruit_NeoPixel(PIXEL_COUNT, PIXEL_PIN, PIXEL_TYPE);//
These lines of code should appear AFTER the #include statements, and before
// the setup() function.
// IMPORTANT: Set pixel COUNT, PIN and TYPE
int PIXEL_PIN = D4;
int PIXEL_COUNT = 3;
int PIXEL_TYPE = WS2811;
// int PIXEL_TYPE = WS2812;
// WS2812 NOTE: use WS2812 if you have them

This creates “strip”, an object, based on “Adafruit_NeoPixel”, a class, which is
defined in the “NeoPixel” library (confused yet?, hold onto your shorts...)

2 Generally speaking you can have many objects of one class in a program. For example, if you had
multiple iLED strips you needed to control, each with a different pin, number of LEDs, color pattern, etc.

Copyright 2022 Page 12
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://www.adafruit.com/products/1734

EE 1301 IoT Lab # 2 ECE Department

As you saw with Serial, in C++ (and many other programming languages), we access the
methods of an object with the syntax “object.method()”. To initialize the strip, we call the method
“strip.begin()”. We only need to do this once, so the best place for it is in the setup()
function of our Photon code. As so:

void setup() {
strip.begin();
...

}

Finally, we have declared and initialized our object; we’re ready to use it to do something useful!

We will be using three methods from the Adafruit_NeoPixel class of objects. In the table below
are definitions of the methods we are going to be using.

Method (Function) Definition Description

void = strip.setPixelColor(<uint16>,<uint32>)3

Example:
strip.setPixelColor(PixelID, myColor)

Store the Color for the n-th PixelID (zero-indexed) in
memory. PixelID refers to the n-th physical LED in
the chain of serially connected LEDs. The LEDs do
not light up yet (see the last row).

<uint32_t> = strip.Color(<uint8>,<uint8>,<uint8>)
Examples:
myColor2 = strip.Color(255,0,0)
myColor = strip.Color(Red,Green,Blue) // WS2811
/* NOTE: WS2812 neopixels set color values as
G,R,B instead of R,G,B */
myColor = strip.Color(Green,Red,Blue) // WS2812

Returns an encoded color representing the RGB
values that neoPixel can use. In the second
example, Red, Green, and Blue are variables
specifying an intensity between 0 and 255.
NOTE: For WS2812 neopixels specify the color
components in the G,R,B order instead of R,G,B
order

void = strip.show()
Example:
strip.show()

Sends the colors stored in memory to the physical
LED strip in single burst transmission. This
statement causes the lights to change color!

We will define a couple of colors, then store the desired data into the strip object. Once
everything is set, we’ll call the show() method to dump the data over the digital data link to the
string of pixels. If you forget to use the show() method, the iLEDs will NOT change colors.

Loop() Example Code

void loop() {
/* NOTE: Two versions of the color code are specified below for WS2811 and

3 You can actually see the definition of this method in the file “neopixel.c” on line 699. Opening the library
definitions is a useful place to look if you need to figure out how an undocumented library function works.

Copyright 2022 Page 13
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

WS2812 neopixels. Use the version according to the type of neopixels in
your kit and delete or comment the other version. */

//Setup some colors, WS2811 version
int PixelColorCyan = strip.Color(0 , 255, 255);
int PixelColorRed = strip.Color(80, 0, 0);
int PixelColorGold = strip.Color(60, 50, 5);
//Setup some colors, WS2812 version
/*
int PixelColorCyan = strip.Color(255 , 0, 255);
int PixelColorRed = strip.Color(0, 80, 0);
int PixelColorGold = strip.Color(50, 60, 5);
*/

//Set first pixel to cyan
strip.setPixelColor(0, PixelColorCyan);
//set second pixel to red
strip.setPixelColor(1, PixelColorRed);
//set third pixel to Gopher Gold!
strip.setPixelColor(2, PixelColorGold);
strip.show();
delay(1000); //wait 1sec

//flip the red and gold
strip.setPixelColor(0, PixelColorCyan);
strip.setPixelColor(1, PixelColorGold);
strip.setPixelColor(2, PixelColorRed);
strip.show();
delay(1000); //wait 1sec

}

Verify and flash your code to your Photon, check that the LEDs function as intended.

It is important to note that NeoPixels hold their color settings until the next show() method call or
5V power goes away. So, there is no need to continuously update them.

Finally, when your circuit generates the expected colors, you can replace the “protection
resistor” with a wire to fix any flickering issue.

Exercise 4

Based on the circuit you built-in Exercise 3, finish one of the following two exercises.

Exercise 4A: Changing Brightness in Steps of 50

(Create a new project: so you have a separate copy of your code.)

Copyright 2022 Page 14
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

Now change the program so that the first LED shows red, the second one green, and the third
one blue. We want all three to have a light intensity of 0, then after a second, all three change
intensity to 50, then 100, 150, 200, 250, and back to 0. (VERY STRONG HINT: Do not use the
pixel.setBrightness() function. It is not intended for this purpose and very likely will break and/or
confuse you later.)

Exercise 4B: Flickering Candle Exercise

Copy your HW3 function “int randWalk(int oldValue, int updateSize);“ to VS
Code. Use it to set the brightness of your LED(s). Try making all three flicker with the same
brightness. Play with the updateSize to create different effects. Try making all three flicker
independently (they will each have a separate “oldValue” and call randWalk() separately.)

Exercise 5: Sensors - Human Input Devices

Accepting input from a human being is a useful feature for
microcontrollers. While this can appear to be a simple task, several
pitfalls exist. We will start by setting up a single push button and
potentiometer (knob) as input devices.

The push button is a normally open momentary switch; this means
that if we tie one terminal of the push button to 3V3 and the other
terminal to an input of the Photon set to “INPUT_PULLDOWN” it
results in the circuit on the right. When the button is “not pushed”, it
results in the Photon’s internal “pulldown” resistor pulling the input to
ground, 0.0V, or a “low” state. Think of this as a default state. When
the button is pushed, the input gets connected to 3V3 with a low
resistance. The resistors have a tug of war, and the lower resistance path wins, pulling the input
to 3.3V or a “high” state.

The potentiometer is a three-terminal device. It is
implemented physically as a long resistor with a contact on
each end (terminals 1 and 3) and a “swiper” that can contact
anywhere in between (terminal 2). When the two fixed
terminals are connected to the power rails (GND and 3V3),
the “swiper” terminal will output a voltage between 0.0V and
3.3V, depending on the position of the swiper. This can easily
be wired into an analog input terminal that samples the
voltage value.

Wire up a push button and a potentiometer as described above and shown in the following
circuit:

Copyright 2022 Page 15
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use#:~:text=intended%20to%20be%20called%20once%2C%20in%20setup()

EE 1301 IoT Lab # 2 ECE Department

We now have two inputs. Note that the pushbutton provides a digital input (D2) and the
potentiometer provides an analog input (A2). We want to sample the states of those inputs and
then output them to the serial port for debugging purposes. The following code shows one way
to do this.
int ButtonPIN = D2;
int PotPIN = A2;

int PotOut = 0;
bool ButtonOut = FALSE;
int ButtonCount = 0;

void setup() {
pinMode(ButtonPIN, INPUT_PULLDOWN);
pinMode(PotPIN, INPUT);
Serial.begin(9600);

}

void loop() {
ButtonOut = digitalRead(ButtonPIN);
PotOut = analogRead(PotPIN);

if(ButtonOut == HIGH) {
ButtonCount = ButtonCount + 1;

Serial.print("Button Count = ");
Serial.print(ButtonCount);
Serial.print(" , Level = ");
Serial.println(PotOut);

}
}

Go ahead and run this code on your Photon, then connect to the Photon with your terminal
program (VS Code, PuTTY, CoolTerm, etc.). Press the button a couple of times, turn the
potentiometer, and press the button again. You should notice a couple of things immediately.

Copyright 2022 Page 16
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

Events vs. State

You may have noticed that pressing the button once may result in reporting more than one
button count. In fact, the number of button counts depends on the speed of your microcontroller
and the complexity of the code being run (not a good thing!).

In our case, we are interested in the event “Button is pushed,” not the current state of the button
“Down.” Inherently the event “Button is pushed” requires knowledge of two pieces of information
-- the previous state of the button “Up” and the current state of the button “Down.” We can build
code to capture these pieces of information and build on them. For example:

ButtonNow = digitalRead(ButtonPIN);

if(ButtonNow == HIGH && ButtonLast == LOW) {

//Do our work here;

ButtonLast = HIGH;
} else if (ButtonNow == LOW) {

ButtonLast = LOW;
}

Finally, to complete Exercise 5, modify the previous example to only send information to the
serial port once per button press.

Debouncing

Often, the human interface is made more
complex because the physical buttons used
actually “bounce” several times before settling
on a steady output value (see oscilloscope
output on the right, which shows the voltage
sampled from a button when it is pressed.)
This can result in detecting multiple button
presses for a single press or an artificial
button press when the button is released.
Usually, this bouncing lasts less than 2ms (but can sometimes last 10s of milliseconds).

The maximum execution rate of the loop function for a Photon device is 1 ms. This can mask
bouncing effects very nicely. Unfortunately, this can sometimes result in a false sense of
security. You can ignore debouncing as long as your App doesn’t:

● Use a switch other than the PCB mount momentary switch supplied by the ECE Depot
● Operate on the “release” of the PCB mount switch rather than the “press”
● Sample the same input multiple times in a single loop() function
● Operate your Photon in SYSTEM_MODE(MANUAL)

Copyright 2022 Page 17
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit

EE 1301 IoT Lab # 2 ECE Department

Exercise 6: Micro Project

Read through the device descriptions for the Speaker and the Servo Motor. Using what you’ve
learned in this lab, write an app that senses something (a button, pot, temp, light, etc.) and
somehow responds (speaker, servo, led, etc.). Use any of the actuators in this lab or devices
you have figured out on your own. A couple of examples of potential micro-projects are:

● Automated Light: Light level rises → Turn off an LED lamp
● Automated Fan: Temperature rises → Turn on a fan
● Music Box: Press a button → play a song or multi-tone siren

While the choice of a specific micro project you do for this section of the lab is up to you, there
are a couple of concepts that are useful for embedded systems design. Now is potentially a
good time to read Quick Lesson - Programming Constructs. Take a look and see if it is relevant
to you.

Lab Report

You are required to submit a written report on your Micro Project. This is only Exercise 6 and is
the open-ended part of this lab. Your report should contain your well-commented code and a
brief (no more than half a page) description of your project.

Be prepared to discuss the following:
● Your experience with each device (sensors, actuators) that you connected.

○ Did it work the first time you connected and programmed it? What mistakes did
you make? How did you resolve any issues? If you didn’t have any issues, just
say so.

○ Include the relevant code you used to get it to work. When describing code, it is
important to break the code into sections and describe how and why you chose
the particular implementation you used.

○ For the sensors, include the table that shows the ADC (analog read) values
under different conditions.

No submission is necessary for the other exercises, but the Lab TA must see a demo of your
circuits. Make sure s/he checks off your work before you leave the lab (or, set up a time outside
the lab to demo if you don’t have time to finish).

Copyright 2022 Page 18
Previous Lab Next LabEE1301 - IoT - Lab1 - Introduction to Particle Photon EE1301 - IoT - Lab3 - Internet Connectivity

https://docs.google.com/document/d/1Wv8NiFzuJ27xj2nQ_xQENvspJ9DjQ_hwdcHhTmCkYYs/edit
https://docs.google.com/document/d/1SUsruREyskFwxlyz9A-HknyszFTcVkA3Mre4JRVTq_k/edit
https://docs.google.com/a/orser.org/document/d/19NTXZBiam6b-_-CpKx3jSh8AlfjAL-ajehJs5jZfqts/edit?usp=sharing

