
Staking proposal

Goals
●​ Simple design to be understood by many people
●​ Native support for historical tier logic
●​ 1:N support for a single staking contract to have many different tier views on the

same historical data
●​ Non-interactive rewards, users should passively accrue value until they exit the

system
●​ Gas efficiency for both reads and writes
●​ No admin keys required to manage or rescale rewards over time
●​ Support third party tokens (but not necessarily "exotic" tokens, can be interactive)
●​ Support "same token" rewards as "revenue share" style distributions

Current situation
We have a TransferTier contract that complects handling tokens (depositing,
withdrawing, recording blocks) with reporting (creating a standard uint256 report over
recorded block history).

There are some nice things about this:

●​ It's very simple to understand conceptually
●​ Users know that when they deposit/withdraw they are guaranteed to move

up/down exactly the tiers they specify
●​ Very gas efficient as we can simply record the tiers rather than the history of every

transaction that goes into calculating the tiers

There are some bad things about this:

●​ There's no internal mechanism for value accrual/distribution based on tokens
locked in the contract, all rewards must be downstream based on tiers held

●​ There's no way to rescale the tier values over time which can be a big problem if
the market value of the locked tokens drastically changes relative to when the tier
levels were established

●​ There can only be a single set of tier values associated with deposits so it can be
very difficult to create a fair scaling when the nature of rewards may be very
different across contexts

●​ Users cannot do partial deposit/withdrawals so even if we added admin keys to
the contract to allow tiers to rescale, users would all have deposited the incorrect
values if the tiers did change

Prior art

We can look around and see examples of both interactive and non-interactive claim
mechanisms.

Generally interactive claim mechanisms are popular, hence the proliferation of
"autocompounder" platforms such as harvest finance. These exist because a common
reward scheme looks like this:

●​ Some reward schedule is decided by the distributor, e.g. "1 million tokens per
month"

●​ End users stake a token and the staking contract tracks a pro-rata share per
block/second of the total rewards being distributed

●​ Users send a transaction to claim the reward and the staking contract logs the
time of the claim (to be the new baseline for the next claim) and sends back the
reward to the user

Typically the rewards are paid in a different token (e.g. LM mining where the LP token is
locked and the reward token is something else) so with the above scheme we almost
always see the following play out:

●​ The users value the token they locked more than the token being rewarded,
which makes intuitive sense as they already own the token they are locking, so it
was likely their preferred token to begin with (e.g. "putting your X to work",
"gresham's law", etc.)

●​ Users can't compound their gains natively due to the linear distribution,
interactive claims, and 2-token stake/reward system, so they dump the reward
token to buy more of the staked token, then restake to manually compound their
gains at the expense of the reward token

●​ The reward token faces intense sell pressure due to being distributed directly to
users who primarily want more of the staked token, and away from users who
might want to buy it, so the token methodically dumps at literally any price, the
moment the price goes too low stakers don't hold the reward token, they take
their staked token and exit the ecosystem entirely to the next project doing
exactly the same thing

The above is the exact business model of platforms like harvest, it's codified mercenary
capital. As well as turning the reward tokenomics into an uphill battle, it's very gas
inefficient for end-users, with a single claim/restake cycle typically costing $100-500+ on
L1.

It's also exactly how our current emissions/vesting contract works, with the caveat that
the opcodes on the emissions contract allow for non-linear distribution schemes that can
be auto-compounder resistant (e.g. bonuses for claiming less often, or writing the
compound interest formula straight into the emissions logic).

As we already support interactive tier based rewards via. Emissions, what we need to
achieve next is:

●​ Arbitrary deposit/withdrawals to allow users to be staking whatever they have
on-hand, rather than tied to a fixed tier-diff

●​ Non-interactive rewards that give every staker the maximum they are entitled to

There are examples of non-interactive rewards systems, Lido is probably the largest.

Lido does ETH 2.0 staking and other managed staking products.

They have a governance token that has an interactive rewards scheme for LPing their
staked tokens against native tokens, but that's not relevant to the non-interactive rewards
in their system.

stETH is the "staked ETH" token that is minted whenever someone deposits ETH into the
staking contract.

stETH has a dynamic balance function and so is easiest to understand but also not
compatible with most defi (including Rain's systems) because dynamic balances
generally break the internal ledgers of contract that hold tokens.

Every day more 2.0 ETH is minted for Lido validators and deposited in the staking
contract, Everyone who holds stETH sees their balance go up pro-rata according to the
newly deposited 2.0 ETH.

In theory this means that 1 stETH is worth exactly 1 ETH. In practice there are all kinds of
liquidity concerns and other risks associated with the ETH2.0 rollout, but that is out of
scope for this document.

Relevant to us is the associated wstETH token which has static balances and so is fully
defi compatible. Importantly, holding wstETH over some time period is equivalent
functionally to holding stETH over the same time period.

How is this achieved with a static balance? It's simple, when stETH is deposited and
withdrawn to mint/burn wstETH, there is no guarantee that the 1 wstETH will be worth 1
ETH, in fact 1 wstETH is continually increasing the amount of ETH that it represents a
claim on as ETH is continually being deposited into the relevant contract.

Proposal
A new factory contract that deploys configurable staking contracts. Each deployed
staking contract is bound to some specific token X that it will accept deposits for and
mint stX (staked X) tokens.

Anon users deposit token X and receive newly minted stX tokens.

The stX supply increases by the same % as the X deposited % increase.

For example, if 1000 X is already in the contract and 2000 stX are in circulation, then a
user deposits 100 X they have increased the deposits by 10% and so can mint a 10%
increase in stX supply for themselves, i.e. 200 stX tokens.

The initial minting ratio is arbitrary so can be configured to anything by the factory
deployer, can be 1:1 or 1:2 or anything else.

If no outside funds are deposited then the staking contract looks exactly like an
ERC20Wrapper contract from Open Zeppelin, where a minted token "wraps" a deposited
token in some ratio (Open Zeppelin is 1:1 but the ratio is superficial, it's like saying "i have 1
dollar" or "i have 100 cents" and meaning the same thing)
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#ERC20Wrapper.

We will build 2 additional features on top of a vanilla wrapper:

●​ We calculate withdrawals based on the current X token supply of the staking
contract rather than the initial ratio

●​ We will track the stX mint/burn logs much like Open Zeppelin Checkpoints
https://docs.openzeppelin.com/contracts/4.x/api/utils#Checkpoints

Balance based withdrawals and deposits

The initial ratio configured for a staking contract will only be respected when the X token
balance of the contract is 0. After that point deposits and withdrawals will mint and burn
according to the balance of X in the contract and total stX supply.

This means that if some X token is deposited to the staking contract without calling the
stX mint function (i.e. a normal token transfer) then it is effectively being transferred pro
rata to all stX token holders non-interactively.

Mints (deposit X):

stXminted / stXtotalSupply* = Xdeposited / Xpool*
=> stXminted = (stXtotalSupply x Xdeposited) / Xpool

Burns (withdraw X):

stXburned / stXtotalSupply* = Xwithdrawn / Xpool*
=> Xwithdrawn = (stXburned x Xpool) / stXtotalSupply

* total supply and pool amounts before the mint/burn operation.

An example to show this. Say 1000 X is already in the contract and 2000 stX are in
circulation then as above, a 100 X deposit will yield a 200 stX mint. Similarly a 200 stX
burn will withdraw 100 X. This is linear all the way to zero, if 200 stX is burned then the
balances will be 900 X and 1800 stX, so the ratio never changes for minting or burning.

Now say 1000 X is deposited directly to the staking contract with no minting. In this case
the new balance is 2000 X deposited with 2000 stX outstanding. Now the ratio is 1:1 not
1:2, which means that burning 200 stX tokens yields 200 X tokens, not 100 X tokens. It
also means that the ratio is 1:1 for further deposits, so depositing 100 X tokens after the
external deposit now only mints 100 stX tokens, not 200. If the deposited X tokens are
doubled without minting again to 4000 X deposited then the ratio is 2:1 which means
burning 200 stX tokens yields 400 X tokens and depositing 100 X tokens only mints 50
stX tokens.

That looks like:

stXminted = (stXtotalSupply x Xdeposited) / Xpool1
Some distribution event => Xpool2 = Xpool1 + Xdistribution
Burn all minted stX => stXburned = stXminted
Final X claim => Xwithdrawn = (stXminted x (Xpool1 + Xdistribution)) / stXtotalSupply

From this we can see:

●​ Rewards follow distribution amounts exactly proportionally, whether linear,
exponential, ad-hoc, etc.

●​ As more stXtotalSupply increases due to other people minting, future rewards are
diluted (although current entitlements are preserved due to "buy in" requirements
on minting)

●​ If the user could gain more stX they could withdraw more X (but in reality they
cannot do this due to the internal ledger restrictions, see below)

Note that this means that unless every last X token is withdrawn, which would reset the
ratios back to the start ratio configured on the contract, the ratio between X tokens and
stX tokens can only ever increase and only for non-minting deposits. For example, in the
above scenario with 4000 X deposited at a 2:1 ratio with 2000 stX tokens circulating, let's
say 1995 stX tokens are burned such that only 10 X tokens remain in the contract and 5
stX tokens are in circulation. The ratio is still 2:1 so if someone were to then deposit 1000
X tokens they'd receive 500 stX tokens ((1000 / 10) x 5). This preserves everyone's stX
token claim on X tokens deposited during their staking period in addition to their own
without requiring an internal ledger. 5 stX tokens still withdraws 10 X token
((5 / 505) x 1010) and 500 stX tokens withdraws 1000 X tokens ((500 / 505) x 1010).

This noninteractive system is easy to reason about in terms of percentages and has the
advantage that any autocompunder-like interactions for a 1-token contract can only
disadvantage a user by wasting gas to get an equivalent or worse result. This is because
withdrawing/claiming any rewards can only re-mint the same or fewer stX tokens that

were burned for the withdrawal. For example, assume a 1:1 system with 1000 X token and
1000 stX tokens and a user withdraws 10% of the stX (100) tokens to withdraw 10% of the
X (100) tokens. Now there are 900 of each associated with the contract. If the user then
redeposits their 100 X token they increase the X supply by 1/9th and so also increase the
stX token supply by 1/9th, i.e. minting the same 100 stX tokens once more.

Noninteractive staking means that every staked user is guaranteed to receive their
maximum possible entitlement of all distributed X tokens.

Noninteractive multi-token systems for a single contract are NOT supported. This is
because a user could repeatedly deposit and withdraw the same X tokens to claim a
share on third-party arbitrarily many times, thus draining the contract of external rewards
without changing the overall X token balance. This attack works because the user is not
required to deposit a corresponding share of the third party tokens to mint a claim on
what is already deposited.

A combination of non-interactive and interactive rewards is recommended for long term
staking campaigns where the non-X token rewards are based on the staking contract
deposit logs and emissions/vesting contract(s).

Another option is to use an aggregator/routing service like 0x protocol to convert non-X
to X tokens automatically onchain before transferring them to the staking contract. A
wrapper contract can be written as the recipient of Rain platform fees to feed directly
into a staking contract. In this way the non-X token fees are "pre-dumped" in a sense, so it
may or may not be appropriate situationally (it puts protocol-level buy pressure on X
token at the same time as distributing it to existing stakers, at the expense of all non-X
tokens).

Deposit and withdrawal block logs
Every deposit and withdrawal should be logged against the depositing/withdrawing
account to create a simple history that can build a report dynamically.

Each deposit should log a block number and the amount of stX token minted (not X
token deposited). Logging the stX token minted and burned rather than X token
deposited guarantees that the ledger remains consistent across arbitrary deposits and
withdrawals.

Consider the case where we try to lodge X token deposits. As there may be external X
token deposited, increasing the amount that a user can withdraw over time (see above), it
would be entirely possible (very likely by design) that if a user burns all their stX token
they will withdraw MORE X token than they ever deposited. This additional withdrawal
would mean that more ledger entries are deleted (see below) than for the stX tokens that
created them (impossible, or at least very undesirable).

Note that as the stX minting ratio monotonically increases over the lifespan of the staking
contract (more X token must be deposited for the same number of stX token minted), it
becomes more difficult to achieve a given tier value over time, all else equal. It is
expected that new report view contracts will be deposited from time to time to rescale
this difficulty, thus providing long time stakers an additional "soft" boost to their tier over
time (i.e. when a rescaled contract is deployed they may retroactively find themselves at
a higher tier).

Summary: we create a ledger of mints/burns of stX token which are guaranteed to
always sum to 0 when everyone fully exits the system. A ledger of X token can't work
because we're intending to have everyone withdraw MORE X than they deposit, which
will cause the ledger to go negative on full exit (impossible).

As we want to support arbitrary withdrawals, the deposits ledger should be wound back
in FILO (first in last out) order, to maximise block ages for depositors in subsequent tier
calculations.

For example, a user mints 500 stX tokens at block 5, 250 tokens at block 10, 300 tokens
at block 20. They would have a ledger like:

05 | 500
10 | 750
20 | 1050

Note the ledger is cumulative which increases gas on writes and allows less calculations
on reads.

If the user burns 400 stX tokens it would consume the full 300 token diff on block 20 and
100 tokens from block 10. The burn action itself is not logged, it is simply a destructive
action that consumes prior deposit logs. The ledger would then look like:

05 | 500
10 | 650

If the user then mints 500 stX tokens at block 30, as the burn is an opaque and
destructive operation, it would simply appear as a new entry:

05 | 500
10 | 650
30 | 1150

This system is destructive but simple as to be (hopefully) gas efficient and also
guarantees that any log entries visible are contiguous (uninterrupted) which is important
for calculating claims downstream. We do NOT want lost tiers to be reinstated, unless at
a newer block of course.

From the basic logs a tier report view system can be overlaid, where an array of up to 8
values is passed in and a standard uint256 report is produced representing 8 blocks.

For example, the final log above could have several value arrays passed and produce the
following block outputs (using 3 values instead of 8 for illustrative purposes):

[100, 200, 300] => 05, 05, 05
[300, 600, 900] => 05, 10, 30
[500, 1000, 1500] => 05, 30, n/a

In this way a single staking log can power many downstream rewards systems, even
allowing for rescaling of tiers by deploying new views over existing data, rather than
using admin keys to try to rescale an existing tier contract in situ.

Note also that the log is REQUIRED for a user to unstake. If a user attempts to withdraw X
tokens by burning stX tokens, they cannot do so if they do not have a corresponding
internal ledger that covers at least the amount of stX tokens being burned. The
withdrawals are locked to the user that deposited, and this means that transferring stX
tokens does NOT transfer the ability to withdraw X tokens. Additionally, stX tokens do
NOT (probably, unless a second-order staking tier contract is created for ststX tokens)
give any interactive rewards from downstream tier contracts, only the underlying ledger
of mints/burns will inform the report logic.

This means that by default stX tokens really have no value to anyone other than their
original minter, but because they can be freely transferred they can also be traded,
which implies that there MAY be some market for them, but it is beyond the scope of this
document to consider the implications or implementation of achieving a liquid market for
stX tokens. UNLIKE Lido (see above) there is no reason to try to achieve a liquid stX/X
token market (e.g. like stETH/ETH) because it is always possible for minters to burn and
remint stX tokens at will, just like there is no need to establish a wETH/ETH market to
enable people to access either.

The market value of a stX token, assuming no external factors, indicates desire for
minters to want to burn at that moment to retrieve their X token, but cannot because they
previously sold their stX tokens (leverage?). This is impossible to estimate in the general
case as every project has its own rewards and tokenomics.

Of course, maintaining this log in solidity begs the gas question. We can look to Open
Zeppelin for the Checkpoints struct which feeds into their voting system, that calculates
voting power at a particular block very similar to calculating an array of thresholds as we
do with tiers.

Stripping back their convenience methods and structs, the fundamentals are simple and
aligned with what we already do for tiers; they reserve the 32 high bits for a block
number for each checkpoint, and the remaining 224 bits for values. This allows 2 ^ 224
tokens to be deposited/withdrawn for each ledger entry, which is ~2.7 x 10 ^ 67 which for
a standard 18 decimal ERC20 gives up to ~2.7 x 10 ^ 49 tokens per deposit/withdrawal…

which should be plenty for almost any project. With this approach each ledger entry can
fit in a single uint256.

Reads will be happening a LOT relative to writes, and storing the ledger in blockchain
storage automatically makes reads as expensive as possible (bad). To a large degree this
is unavoidable in order to achieve a flexible internal ledger, and so users should be
advised NOT to make many deposits as it will make all their subsequent reads more
expensive. As a design principle the cost of downstream reads on a user's staking should
also be borne by the user, this will encourage them to optimise their ledger (keep it
short). All pull-based claim mechanisms do this, but any kind of push-based distribution
mechanism could be griefed by a user creating a very long ledger with dust size
deposits.

We can likely optimise the storage reads by looping over the ledger directly with
assembly rather than loading the entire ledger from storage before attempting to
calculate a view over it. In the examples above, we know the user has reached all 3 tiers
by block 5 after viewing a single ledger entry, so we can short-circuit further expensive
storage reads on the underlying deposits ledger, having fulfilled all the tier values of the
view calculation.

It's still not ideal that we are looping over storage reads, so it is important that we
measure and review gas costs in practice, keeping an eye on overall feasibility. As
mentioned above, crypto in general is littered with staking mechanisms that are so
expensive to maintain that most users are simply priced out of rewards that are
meaningful compared to the size of their staked tokens. Hopefully the combination of
noninteractive staking, compressed log entries and assembly/short circuiting view logic
is enough to sufficiently mitigate this pain, and provide a foundational building block for
native project token staking.

Impact to the codebase

Contracts
The following contracts may all be deleted or heavily reworked to fit this paradigm:

●​ Balance tier
●​ Transfer tier
●​ Value tier

Overall the final size of the codebase should be comparable after staking is added to the
current LOC.

Interfaces
The ITier interface may be extended to support an arbitrary bytes parameter for report.

This would be a breaking change for existing ITier ecosystems, so maybe manifest as an
ITierV2 or similar. Perhaps there is a backwards compatible implementation that
preserves the current report functionality.

In this case the additional bytes could be a value list that the staking contract can directly
return reports for, this would make view contracts very simple to implement, while
allowing the staking contract itself to be ITier compatible.

If we don't change ITier in this way then the staking contract will have to expose a
non-standard report function to handle values.

Note that adding data to ITier will likely be necessary in the future anyway to support
NFT ID based reporting (rather than NFT balance).

Real world example: PGEN staking

Consider polygen PGEN token.

Polygen can set fees for each sale with the existing Sale contract.

Fees are paid in the reserve currency of the raise so will need converting.

Polygen can write a wrapper contract as the recipient of fees from their website.

Anon can call a function on the wrapper to sweep fees into the wrapper.

Anon can call a function on wrapper to trade collected fees in aggregate through 0x or
similar to convert reserve to PGEN via. AMM (effectively a "buyback").

PGEN tokens post-conversion can be deposited without minting stPGEN into the PGEN
staking contract (effectively revenue share from fees).

All the above can be implemented trustlessly without admins on the wrapper contract.

In addition to revenue share, staking internal ledger can feed into tier based rewards for
PGEN stakers. Examples include exclusive access and discounts on future raises on the
Polygen platform.

	Staking proposal
	Goals
	Current situation
	Prior art
	Proposal
	Balance based withdrawals and deposits
	Deposit and withdrawal block logs

	Impact to the codebase
	Contracts
	Interfaces

	Real world example: PGEN staking

