
Rusty QR Code Generator
This Document is Public

Short link: go/rusty-qr-code-generator
Author: lukasza@chromium.org

April 2023

Reviewer danakj Approved

Reviewer Adam Langley Approved

Reviewer Peter Williamson Approved

Reviewer Elly Fong-Jones Approved

One-page overview

Summary
The Chrome Security team is actively working on adding a production Rust toolchain to the
Chromium build system. The Rusty QR Code Generator project will be used for verifying
that the Rust toolchain works well when actually shipping a third-party Rust crate in the
Chrome binary - this project will be the first to ship and use such a crate. (A
chrome://crash/rust URL handler will ship earlier and will be the first project to ship
Rust-compiled code in Chromium, but it will not use any third-party Rust crates - see
https://crbug.com/1368726.)

The QR Code Generation has been chosen as the initial, pilot usage of Rust, because:
- It is used on the majority of Chrome platforms where the Rust toolchain needs to

work.
- It requires only a fairly simple and narrow FFI between C++ and Rust
- It can be easily reversed if it causes issues (since it is a relatively small feature and it

is not under pressure from any product goals).

We expect that switching to a third-party Rust crate will also lead to minor improvements in
Chromium (e.g. code simplification, performance improvements), but such gains are only a
secondary motivation for this project. In particular these secondary benefits haven’t been
evaluated from the perspective of business needs that third-party Rust crates are expected

mailto:danakj@chromium.org
mailto:agl@chromium.org
mailto:petewil@chromium.org
mailto:ellyjones@chromium.org
https://goto2.corp.google.com/rusty-qr-code-generator
mailto:lukasza@chromium.org
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://crbug.com/1368726
https://chromium.googlesource.com/chromium/src/+/main/docs/adding_to_third_party.md#Rust

to meet (at this point during Chromium Rust experiments piloting the Rust toolchain
provides sufficient justification for the project).

The QR generator in Chromium started life as a way to generate linking QR codes for
passkeys. In that context it only processed trustworthy data generated inside Chromium
and so ran synchronously. Later Chromium added the ability to share pages via QR codes
(try clicking the share icon in the omnibar), but URLs are arbitrary inputs and the QR
generator isn’t trivial. So, by the rule of two, it was moved into a utility process. But that
makes it asynchronous and slow, which complicates the lifetimes of objects involved in the
UI and adds a noticeable UI delay on slower machines. The Rusty QR Code generation
projects plans to make QR generation synchronous, fast and safe. We plan to do that by
delegating QR generation into a 3rd-party Rust crate (rather than using Chromium’s current
C++ implementation).

Platforms
Mac, Windows, Linux, Chrome OS, Android (justification: sharing the URL of the current
page via QR is available on all of these platforms; WebAuthn QR generation is used on all
desktop platforms).

iOS (not sure if that would be affected by changes in chrome/browser/… - does it use
Chromium’s QR code for webauthn and/or url sharing? It seems that for sharing on iOS a
different QR generator is used.)

Fuchsia, Android WebView, WebLayer (justification: QR codes are currently only generated
for display in the browser UI, and these have no browser UI)

Android CCT (justification: points out that WebAuthn QR generation isAdam Langley
desktop only; has checked that we intentionally don't make the sharingPeter Williamson
dialog available for CCTs).

Team
(from Chromium Security > Chrome Memory Safety > Cr2O3 /Łukasz Anforowicz

Rust-in-Chromium team) is responsible for the design, implementation, and launch of the
project.

Long-term owner of the project is (from the Chrome With Friends team)Peter Williamson

Bug
Implementation-tracking bug: https://issues.chromium.org/issues/40263739
(previously tracked as https://crbug.com/1431991)

mailto:agl@chromium.org
mailto:petewil@chromium.org
mailto:lukasza@chromium.org
mailto:petewil@chromium.org
https://chromium.googlesource.com/chromium/src/+/main/docs/adding_to_third_party.md#Rust
https://chromium.googlesource.com/chromium/src/+/main/docs/adding_to_third_party.md#Rust
https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:ios/chrome/browser/ui/sharing/qr_generator/qr_generator_util.mm;l=14-18;drc=25f2ea1a864270fef1c96c014f552f1459280ac1
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:ios/chrome/browser/ui/sharing/qr_generator/qr_generator_util.mm;l=14-18;drc=25f2ea1a864270fef1c96c014f552f1459280ac1
https://developer.chrome.com/docs/android/custom-tabs/
https://issues.chromium.org/issues/40263739
https://crbug.com/1431991

Launch-tracking bug (Google-internal): https://launch.corp.google.com/launch/4248932

Code affected
- QRCodeGenerator - //components/qr_code_generator/…

- This is a process-agnostic, somewhat low-level code that can translate a
sequence of bytes into QR pixels

- This project plans to *replace* this code with a 3rd-party Rust crate
- This code is used from Ash OOBE for nearby and cellular connectivity

- QRCodeGeneratorService - //chrome/services/qrcode_generator/…
- This provides an API that the Browser process uses to generate QR bitmaps.

The implementation runs in a utility process and:
- Uses QRCodeGenerator (the item above) to translate bytes into QR

pixels
- Translates QR pixels into a Skia image

- This project plans to *modify* this code:
- Expose an in-process, synchronous C++ API instead of the current

mojom API
- Use the Rust crate that replaces C++ QRCodeGenerator.

- This code is used for webauthn on desktop, Ash RMA generation, and for URL
sharing on desktop and on Android

https://launch.corp.google.com/launch/4248932
https://en.wikipedia.org/wiki/Out-of-box_experience
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/ash/login/oobe_quick_start/target_device_bootstrap_controller.cc;l=50-51;drc=25f2ea1a864270fef1c96c014f552f1459280ac1
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chromeos/ash/services/cellular_setup/euicc.cc;l=187-189;drc=25f2ea1a864270fef1c96c014f552f1459280ac1
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/views/webauthn/authenticator_qr_sheet_view.cc;l=49-64;drc=085a15036ddb95b046541a084fb0d8e78f1e5aa1
https://en.wikipedia.org/wiki/Return_merchandise_authorization
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ash/shimless_rma/chrome_shimless_rma_delegate.cc;l=58-79;drc=bc3784ba81585a286a23bc8751fe9b6db25b2522
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/views/qrcode_generator/qrcode_generator_bubble.cc;l=139-143;drc=4049a09b65a64447c5c7f6aa52dadb7dfb651451
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/share/qr_code_generation_request.cc;l=25-45;drc=191617ba6ad9ef6f8827cf72cf1c748a3d1645f0

Design

High-level overview of the planned changes
Current implementation (diagram source can be found here):

Planned implementation (diagram source can be found here):

https://sequencediagram.googleplex.com/view/6316901179326464
https://sequencediagram.googleplex.com/view/6330271194415104

Evaluation of available Rust crates

Chosen crate: qr_code
Based on the evaluation below, the project tentatively plans to use the `qr_code` crate.

Notes:
- As discussed in the section below, the segmentation approach is not optimal, but

seems sufficient for Chromium scenarios.
- Security review of the `qr_code` crate can be found here:

go/qr-code-chromium-security-review (Google-internal, sorry).

Overview of considered crates
- http://docs.rs/qrcode

- Recent downloads: 246,569
- Updated: 3 years ago
- Notes:

- Segmentation uses a simplistic greedy algorithm (also see here).

https://goto2.corp.google.com/qr-code-chromium-security-review
http://docs.rs/qrcode
https://docs.rs/qrcode/latest/qrcode/optimize/struct.Optimizer.html#method.new
https://github.com/kennytm/qrcode-rust/blob/faa4397ba7c5f441cb9a2b436c1e84a0d52ae942/src/optimize.rs#L302-L327

- At the first glance the API should work okay with C++/Rust FFI
provided by `cxx`

- The maintainer is non-responsive (there are currently 7 open PRs with
no reply from the maintainer)

- https://docs.rs/qrcodegen/1.8.0/qrcodegen/
- Recent downloads: 68,481
- Updated: 12 months ago
- Notes:

- No segmentation is implemented currently.
- Author doesn’t follow semver semantics (see the issue here).
- At the first glance the API should work okay with C++/Rust FFI

provided by `cxx`
- https://crates.io/crates/qr_code [the chosen crate]

- Downloads all time: 23,598
- Updated: 2.5 years ago
- Notes:

- This is a fork of `qrcode` (see kennytm/qrcode-rust/issues/51) that is
more actively maintained.

- Notable commits:
- Removed dependencies / modules:

- checked_int_cast dep (commit link)
- image, svg, and render

- Added #![forbid(unsafe_code)] (PR link)
- https://crates.io/crates/fast_qr

- Recent downloads: 10,536
- Updated: 18 days ago
- Notes:

- No segmentation is implemented currently.
- N/A - actual QR code generation is delegated to other crates

- https://docs.rs/qrcode-generator => delegates to `qrcodegen`
- https://crates.io/crates/qr2term => delegates to `qrcode`

Requirement: QR segmentation
The project requires that the generated QR codes use reasonable segmentation. This
requirement has been initially pointed out by .Adam Langley

QR codes encode the input bytes into a number of segments. Each segment encodes a
slice of input using a specific mode: numeric, alphanumeric, bytes, Kanji. Naive
segmentation (e.g. encoding everything in “bytes” mode; or always using “numeric” mode
for digits) may produce unnecessarily long QR codes.

mailto:agl@chromium.org
https://cxx.rs/
https://docs.rs/qrcodegen/1.8.0/qrcodegen/
https://github.com/nayuki/QR-Code-generator/issues/117
https://cxx.rs/
https://crates.io/crates/qr_code
https://github.com/kennytm/qrcode-rust/issues/51
https://github.com/RCasatta/qr_code/commit/f6984890fdc66801e827c84b88c4d70a08acdf4a
https://github.com/RCasatta/qr_code/commit/130c586af66429768c83e673ec77f79809e009ac
https://crates.io/crates/fast_qr
https://docs.rs/qrcode-generator/4.1.7/qrcode_generator/
https://crates.io/crates/qr2term
https://en.wikipedia.org/wiki/QR_code#Information_capacity

Segmentation from the perspective of Chromium inputs
Note that the “alphanumeric” mode only covers upper-case letters. Case-insensitive URL
elements (scheme, host name) are typically written as lowercase, and case-sensitive
elements like paths commonly include lowercase. This means that URLs usually cannot be
encoded as a single “alphanumeric” segment.

Chromium scenarios from segmentation perspective (AFAIK this covers all transitive users
of //components/qr_code_generator/…):

- EID and FIDO URLs:
- 2 callers:

- cellular_setup/euicc.cc: "EID:" (alphanumeric) + 32 digits (numeric)
- device/fido: “FIDO:/” + followed by digits (numeric)

- For these scenarios the initial, naive segmentation (consecutive sequence of
digits = “numeric” mode segment; an alphanumeric sequence =>
“alphanumeric” mode segment) is optimal.

- Arbitrary URLs:
- 4 callers:

- ash/login/oobe_quick_start: "https://signin.google/qs/…?key=..." (here -
bytes, lowercase is *not* alphanumeric) + shared secret (base64 -
probably bytes) + session id (also base64). Note that base64 may
contain sequences of consecutive uppercase letters and digits (i.e. fit
into an alphanumeric segment).

- shimless_rma: url from a protobuf (probably bytes, because of
lower-case)

- chrome/browser/share: url from Java (probably bytes, because of
lower-case)

- chrome/browser/ui/views/qrcode_generator: url from
NavigationEntry, from GetLastCommittedURL(), etc.

- Initial, naive segmentation may produce suboptimal results - merging
adjacent segments might be required to minimize the length of the QR code
(e.g. to avoid representing a sequence of N alternating digit/uppercase-letter
like “1A2BC3…” with 2N segments: N “numeric” segments interleaved by N
“alphanumeric” segments).

- In practice, optimization opportunities might have limited impact, because
uppercase characters are fairly rare in URLs.

Algorithms in current Chromium code and in considered Rust crates
The current C++ code greedily coalesces adjacent segments in 2 passes: first pass
merges “numeric” and “alphanumeric” segments and the second pass also considers
“bytes” segments (adjacent segments are merged if it results in a local improvement). The

https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chromeos/ash/services/cellular_setup/euicc.cc;l=42;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chromeos/ash/services/cellular_setup/public/mojom/esim_manager.mojom;l=34-35;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:device/fido/cable/v2_handshake.cc;l=328;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:device/fido/cable/v2_handshake.cc;l=471-476;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/ash/login/oobe_quick_start/connectivity/incoming_connection.cc;l=46-58;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/ash/login/oobe_quick_start/connectivity/random_session_id.h;l=31-32;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:ash/webui/shimless_rma/backend/shimless_rma_service.cc;l=504-507;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/share/qr_code_generation_request.cc;l=34;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/ui/views/qrcode_generator/qrcode_generator_bubble.cc;l=139;drc=658513873aafd7e3b6e89072d4f220b0e9292883
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/ui/browser_commands.cc;l=1410;drc=658513873aafd7e3b6e89072d4f220b0e9292883
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/ui/browser_commands.cc;l=1410;drc=658513873aafd7e3b6e89072d4f220b0e9292883
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/ui/sharing_hub/sharing_hub_bubble_controller_desktop_impl.cc;l=182;drc=658513873aafd7e3b6e89072d4f220b0e9292883

C++ code doesn’t consider or produce Kanji segments. The algorithm has O(N^2) time
complexity.

The `qrcode` crate implements a single-pass greedy coalescing algorithm (also see
here) that merges adjacent segments if it results in a local improvement. The algorithm
runs in O(N) time (merging is done in an Iterator::next implementation, and unlike
Chromium's implementation doesn’t remove elements from a vector, making it more
efficient in memory bandwidth as well). FWIW, a doc comment says that the algorithm
“does not use Annex J from the ISO standard”.

The following example shows where the 2-pass coalescing algorithm produces a better
result than a single-pass coalescing algorithm (such as used by the `qrcode` crate): 20 ‘#’
characters followed by 20 alternating letter / digit pairs (i.e.
“####################A1B2C3D4E5F6G7H8I9J0”).

● The optimal segmentation is a “bytes” segment followed by an “alphanumeric”
segment.

● The single-pass greedy algorithm will repeatedly consider it beneficial to merge the
initial “bytes” segment with each of the subsequent single-character “numeric” or
“alphanumeric” segments.

This example is not representative of Chromium use cases:
● `qrcore`’s algorithm will produce optimal segmentation for Chromium’s EID: and

FIDO: URLs. This was verified for sample EID: and FIDO: URLs - `qrcode` produced
reasonable segmentation for them (a short Alphanumeric segment followed by a
longer Numeric segment). See here for a live, in-browser demo.

● Segmentation optimization opportunities have limited impact on other scenarios
where arbitrary URLs are processed, because upper-case letters are relatively rare
in URLs.

Project Nayuki provides a QR code generation library in multiple languages (including the
`qrcodegen` crate). One of the project’s pages describes a dynamic programming
approach for generating optimal segmentation. Unfortunately, this algorithm is only
available in the Java version of the library (as documented here). In particular, the
`qrcodegen` crate does *not* implement any segmentation optimization - the
implementation of `QrSegment::make_segments` always returns a vector of length 0 or 1
(the documentation of this method is somewhat misleading saying: “may use various
segment modes and switch modes to optimize the length of the bit stream”).

Side-note: The author of this design doc () believes that theŁukasz Anforowicz
segmentation problem can be seen as the problem of finding the shortest path in a graph
(where graph nodes represent positions in-between bytes of input, and each graph edge
decides the mode to be used to encode the previous byte). The dynamic programming
approach can be seen as a particular implementation or variant of the Dijkstra algorithm

mailto:lukasza@chromium.org
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:components/qr_code_generator/qr_code_generator.cc;l=1430-1452;drc=9e30ec42d253ae6fe4a10fbfcafb58fe15e147fc
http://docs.rs/qrcode
https://docs.rs/qrcode/latest/qrcode/optimize/struct.Optimizer.html#method.new
https://github.com/kennytm/qrcode-rust/blob/faa4397ba7c5f441cb9a2b436c1e84a0d52ae942/src/optimize.rs#L302-L327
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:components/qr_code_generator/qr_code_generator.cc;l=1388-1399;drc=9e30ec42d253ae6fe4a10fbfcafb58fe15e147fc
https://www.rustexplorer.com/b#%2F*%0A%5Bdependencies%5D%0Aqrcode%20%3D%20%220.12.0%22%0A*%2F%0A%0Ause%20qrcode%3A%3AQrCode%3B%0Ause%20qrcode%3A%3Arender%3A%3Aunicode%3A%3ADense1x2%3B%0A%0Afn%20print_qr(input%3A%20%26str)%20%7B%0A%20%20%20%20println!(%22---------------------------------%22)%3B%0A%20%20%20%20println!(%22QR%20image%20for%20the%20following%20input%3A%22)%3B%0A%20%20%20%20println!(%22%7Binput%7D%22)%3B%0A%20%20%20%20let%20qr%20%3D%20QrCode%3A%3Anew(input.as_bytes()).unwrap()%3B%0A%20%20%20%20let%20img%20%3D%20qr.render%3A%3A%3CDense1x2%3E().build()%3B%0A%20%20%20%20println!(%22%7Bimg%7D%22)%3B%20%20%20%20%0A%7D%0A%0Afn%20main()%20%7B%0A%20%20%20%20print_qr(%22EID%3A12345679012345679012345679012%22)%3B%0A%20%20%20%20print_qr(%22blah%22)%3B%0A%7D
https://docs.rs/crate/qrcodegen
https://www.nayuki.io/page/optimal-text-segmentation-for-qr-codes
https://www.nayuki.io/page/qr-code-generator-library#features:~:text=Optional%20advanced%20features%20(Java%20only)
https://github.com/nayuki/QR-Code-generator/blob/2643e824eb15064662e6c4d99b010740275a0be1/rust/src/lib.rs#L1037-L1055
https://github.com/nayuki/QR-Code-generator/blob/2643e824eb15064662e6c4d99b010740275a0be1/rust/src/lib.rs#L1037-L1055
https://docs.rs/qrcodegen/1.8.0/qrcodegen/struct.QrSegment.html#method.make_segments

(where nodes and edges are considered in a kind of “hard-coded” order, rather than in an
order dictated by a priority queue).

The `fast_qr` crate doesn’t implement any optimization of segmentation. A single
segment is used for the whole QR code. See QRBuilder::build, QRCode::new: (single mode:
`let mode = encode::best_encoding(input)`), create_matrix (single mode received as input),
encode (single mode received as input - single call to encode_numeric /
encode_alphanumeric / encode_byte).

Additional optimization opportunities
Chromium’s algorithm and the `qr_code` algorithm only merge 2 segments at a time, and
only if the merge is immediately/locally beneficial. This strategy produces suboptimal
results when merging 3 or more segments is needed to realize some gains - this can
happen if a merge results in an increase in bits-per-char that needs to be offset by savings
from dropping *more* than 1 segment header.

On the first 2880 characters of base64 input from
https://cryptopals.com/sets/1/challenges/6 this results in the following difference:

- Shortest-path algorithm: 23034 bits (see
https://github.com/RCasatta/qr_code/pull/23)

- Single segment of bytes: 23060 bits
- `qr_code` algorithm: 23356 bits (101.4% of shortest-path-based segmentation)
- Chromium algorithm: 23666 bits (102.7% of shortest-path-based segmentation)

A hostile input (160 x [8 bytes followed by 8 alphanumerics]) can be constructed where
merging of 2 consecutive segments is never beneficial, but a single segment of bytes is
optimal:

- Single segment of bytes: 20500
- Original segmentation: 23200 (113.1% of optimal segmentation)

Requirement: API that can replace Chromium’s QRCodeGenerator
The project requires that the 3rd party Rust crate provides an API that can 1) replace
Chromium’s QRCodeGenerator, 2) use C++/Rust FFI tools available in Chromium (primarily
`cxx`, although in theory manually-crafted FFI and `cbindgen` are also available).

On the C++ library in Chromium provides the following API (see here):Apr 10, 2023
- Input: a sequence of arbitrary bytes: `base::span<const uint8_t>`. In practice the

input is always UTF-8 (see the Chromium scenarios section above), but the C++ API
doesn’t enforce this (switching to `std::string` could weakly signal the intent, but
wouldn’t help with enforcement).

- Config:
- Minimal QR code version

https://crates.io/crates/fast_qr
https://github.com/erwanvivien/fast_qr/blob/75c7b177c3a733526386ee4ccc9674fd412849a7/src/qr.rs#L231-L238
https://github.com/erwanvivien/fast_qr/blob/75c7b177c3a733526386ee4ccc9674fd412849a7/src/qr.rs#L128-L156
https://github.com/erwanvivien/fast_qr/blob/75c7b177c3a733526386ee4ccc9674fd412849a7/src/placement.rs#L122-L137
https://github.com/erwanvivien/fast_qr/blob/75c7b177c3a733526386ee4ccc9674fd412849a7/src/encode.rs#L19-L38
https://cryptopals.com/sets/1/challenges/6
https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator.h;l=85-94;drc=2d9abfc08978ad3c83a014c0bcd86909c924d55e

- Most non-test callers don’t specify this optional argument
- One caller passes 5 (here) saying: “The QR version (i.e. size) must be

>= 5 because otherwise the dino painted over the middle covers too
much of the code to be decodable.”

- Note that the C++ implementation supports only QR version up to 12
(i.e. it is capable of encoding up to ~300 arbitrary bytes). The
`qr_code` Rust crate supports up to QR version 40 (i.e. it can encode
up to ~2800 arbitrary bytes).

- QR code mask (used to avoid long swaths of all-white or all-black pixels)
- Seems unused (see the removal CL here -

https://crrev.com/c/4420267)
- Error correction level is not controlled by the caller.

- A comment says that “all versions currently use error correction at
level M”.
(Interestingly `QrCode::new` in the `qr_code` crate also defaults to `M`.)

- Wikipedia describes the following levels: L (7% can be restored), M
(15%), Q(25%), H (30%). Requesting higher error correction levels may
be potentially desirable, but is outside the scope of this project.

- Output (see here):
- raw QR pixels / modules: `base::span<uint8_t> data`

- Each byte indicates either “dark” or “light” pixel based on
least-significant bit (see here). Other bits are masked out and ignored
(service layer - see here and here; lower layer - see here and here).

- This always contains `qr_size * qr_size` pixels. The rendering code will
ignore locator areas.

- QR size: `int qr_size` (this is the width [and also the height] of the QR code
[unit = QR modules / pixels])

- Error is indicated by an empty `data` (see here). Note that INPUT_TOO_LONG
is handled and may be returned at the mojom layer.

The `qrcode` crate provides the following API:
- Input:

- Accepts arbitrary bytes (takes `AsRef<[u8]>` as input - e.g. see QrCode::new).
- Config:

- Either automatically chooses the best version/size of the output
(QrCode::new or QrCode::with_error_correction_level) or takes a *specific*
(rather than *minimal*) version to use (QrCode::with_version). This is okay -
if the former method returns a version smaller than the requested minimal
version, then we can retry by asking for exactly the minimal version.

- Output:
- QrError can report the following errors:

- Input data too long
- Invalid version / error correction level (N/A - we won’t specify)

https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/services/qrcode_generator/qrcode_generator_service_impl.cc;l=308-310;drc=9e30ec42d253ae6fe4a10fbfcafb58fe15e147fc
https://crrev.com/c/4420267
https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator.cc;l=23;drc=2d9abfc08978ad3c83a014c0bcd86909c924d55e
https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator.h;l=37-44;drc=2d9abfc08978ad3c83a014c0bcd86909c924d55e
https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator.h;l=37-38;drc=2d9abfc08978ad3c83a014c0bcd86909c924d55e
https://source.chromium.org/chromium/chromium/src/+/main:chrome/services/qrcode_generator/qrcode_generator_service_impl.cc;l=326-330;drc=7ff77da5152fe84f47608cc86b8c9a91f10d7a3f
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/services/qrcode_generator/qrcode_generator_service_impl.cc;l=221;drc=837cc12de25a288edf3ac222f7265c9936e69552
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/browser/ash/login/screens/quick_start_screen.cc;l=79;drc=837cc12de25a288edf3ac222f7265c9936e69552
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chromeos/ash/services/cellular_setup/euicc.cc;l=185-192;drc=837cc12de25a288edf3ac222f7265c9936e69552
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:chrome/services/qrcode_generator/qrcode_generator_service_impl.cc;l=221-230;drc=991110a34dafb7233475cdfa91c3416d1e91b724
https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator.h;l=40;drc=2d9abfc08978ad3c83a014c0bcd86909c924d55e
https://source.chromium.org/chromium/chromium/src/+/main:chrome/services/qrcode_generator/public/mojom/qrcode_generator.mojom;l=15-16;drc=7ff77da5152fe84f47608cc86b8c9a91f10d7a3f
http://docs.rs/qrcode
https://docs.rs/qrcode/latest/qrcode/struct.QrCode.html#method.new
https://docs.rs/qrcode/latest/qrcode/struct.QrCode.html#method.new
https://docs.rs/qrcode/latest/qrcode/struct.QrCode.html#method.with_error_correction_level
https://docs.rs/qrcode/latest/qrcode/struct.QrCode.html#method.with_version
https://docs.rs/qrcode/latest/qrcode/types/enum.QrError.html

- Unsupported character set / invalid character / invalid ECS (N/A - can
only happen when using low-level APIs)

- QrCode::into_colors takes `self` and returns `Vec<Color>`.
- This covers the locator areas as well (like C++ code) - see here (the

quiet zones surround the QR code, but `i` is incremented for each
“internal” pixel, including the locator areas).

- C++/Rust FFI bindings provided by `cxx` seem able to support this API
via `rust::Vec<T>` (since T is an opaque Rust type, rather than an
opaque C++ type - the latter is unsupported). We would just need to
provide some accessor methods - e.g. `Color::is_dark()`, or convert to
`Vec<u8>` in the FFI/glue code (the latter is probably preferable
because of performance considerations).

- QrCode::width takes `&self` and returns `usize`. Note that this is the width
(height is the same), not the total number of pixels.

The `qrcodegen` crate provides the following API:
- QrCode::encode_binary accepts arbitrary bytes (takes `&[u8]`)
- `minversion` is accepted by `QrCode::encode_segments`
- The only possible error is `DataTooLong`
- Size is provided via `QrCode::size`
- There is no direct way to get a vector of all the pixels - an intermediate layer needs

to repeatedly call QrCode::get_module(&self, x, y) to get a `bool` at the given
coordinates.

Proposed public API changes

//components/qr_code_generator
Summary of the existing public API at
components/qr_code_generator/qr_code_generator.h:

- // member (i.e. non-`static`) function:
absl::optional<QRCodeGenerator::GeneratedCode>
QRCodeGenerator::Generate(

base::span<const uint8_t> in,
absl::optional<int> min_version,
absl::optional<uint8_t> mask) // Unused - removal in

https://crrev.com/c/4420267
- struct GeneratedCode {

base::span<uint8_t> data; // 0-length upon errors, points at
`QRCodeGenerator::d_`

int qr_size = 0; // Invariant: data.size() == qr_size * qr_size
}

https://docs.rs/qrcode/latest/qrcode/struct.QrCode.html#method.into_colors
https://docs.rs/qrcode/latest/qrcode/types/enum.Color.html
https://github.com/kennytm/qrcode-rust/blob/faa4397ba7c5f441cb9a2b436c1e84a0d52ae942/src/render/mod.rs#L179-L182
https://cxx.rs/
https://cxx.rs/binding/vec.html
https://docs.rs/qrcode/latest/qrcode/struct.QrCode.html#method.width
https://docs.rs/qrcodegen
https://docs.rs/qrcodegen/1.8.0/qrcodegen/struct.QrCode.html#method.encode_binary
https://docs.rs/qrcodegen/latest/qrcodegen/struct.QrCode.html#method.encode_segments
https://docs.rs/qrcodegen/latest/qrcodegen/struct.QrCode.html#method.size
https://docs.rs/qrcodegen/1.8.0/qrcodegen/struct.QrCode.html#method.get_module
https://source.chromium.org/chromium/chromium/src/+/refs/heads/main:components/qr_code_generator/qr_code_generator.h
https://crrev.com/c/4420267

Proposed API changes:
- Remove the unused `mask` parameter (motivation: simplification)
- Change `GeneratedCode::data` to `std::vector<uint8_t>`

- Motivation: avoiding non-owning pointers/references across the FFI
boundary

- Motivation: avoiding invalidating `base::span` after a 2nd call to `Generate`

Optional API changes (nice-to-haves, not required for project success):
- Communicate errors via `base::expected<GenerateQRCodeResponse ,

QRCodeGeneratorError>` rather than via `absl::optional`
- Reduce unused public API surface (e.g. `QRCodeGenerator::SegmentType`,

`VersionClass`, `V5`, etc. can be made `private` [or comments may be added that
they are private for unit tests])

- Change `qr_size` to `size_t`

//chrome/services/qrcode_generator
Summary of the existing public API at chrome/services/qrcode_generator/public:

- C++:
- mojo::Remote<mojom::QRCodeGeneratorService>

LaunchQRCodeGeneratorService();
- Mojo:

- enum QRCodeGeneratorError
- enum ModuleStyle
- enum LocatorStyle
- enum CenterImage (only Dino and Passkey are used in practice it seems)
- struct GenerateQRCodeRequest {

string data;
bool should_render; // Whether to populate

`GenerateQRCodeResponse::bitmap`
ModuleStyle render_module_style;
LocatorStyle render_locator_style;
CenterImage center_image;

}
- struct GenerateQRCodeResponse {

QRCodeGeneratorError error_code;
skia.mojom.BitmapN32? Bitmap; // null on error, or if `!should_render`
array<uint8> data; // data from the //components/qr_code_generator layer
gfx.mojom.Size data_size; // data from the

//components/qr_code_generator layer
}

- [ServiceSandbox=sandbox.mojom.Sandbox.kService]
interface QRCodeGeneratorService {

https://source.chromium.org/chromium/chromium/src/+/main:base/types/expected.h
https://source.chromium.org/chromium/chromium/src/+/main:base/types/expected.h
https://source.chromium.org/chromium/chromium/src/+/main:chrome/services/qrcode_generator/public
https://source.chromium.org/chromium/chromium/src/+/main:chrome/services/qrcode_generator/qrcode_generator_service_impl.cc?q=CenterImage.*DEFAULT_NONE%20-f:%2Fgen%2F&ss=chromium

GenerateQRCode(GenerateQRCodeRequest request)
=> (GenerateQRCodeResponse response);

};

Proposed API changes:
- Replace mojo calls with C++ calls:

- Proposed API:
- class QrCodeGeneratorService {

public:
// Default-constructible, movable, non-copyable.
QrCodeGeneratorService();
~QrCodeGeneratorService();

void Generate(
mojom::GenerateQRCodeRequestPtr request,
base::OnceCallback<void(mojom::GenerateQRCodeResponsePtr)>

callback);
}

- Motivation:
- In the current, C++/mojo implementation the proposed changes hide

(i.e. encapsulate away): `mojo::Remote` and mojo calls (allowing to
replace them with in-process calls based on a base::Feature).

- Controlling the mojo calls and callbacks means that the mojo
response can first be processed by QrCodeGeneratorService - this will
help measure and record the new UMA metric planned for the
project.

- Having a QrCodeGeneratorService class (instead of making `Generate`
a top-level free function) means that we can keep a long-lived
`mojo::Remote`. This seems somewhat desirable (as opposed to
getting a `mojo::Remote` within the `Generate` function and
establishing this mojo connection on demand - e.g. every time a QR
code generator happens) as it allows the Remote to become optional
in the future, with the QrCodeGeneratorService being the only code
aware of the choice between local vs remote generation. Currently
users of the old API stash the `mojo::Remote` in the following fields
(and it seems reasonable to assume that some of these fields can be
long-lived):

- ChromeShimlessRmaDelegate::qrcode_service_remote_
- QRCodeGenerationRequest::remote_
- QRCodeGeneratorBubble::qr_code_service_remote_
- AuthenticatorQRViewCentered::qr_code_service_remote_

- Other notes:

- The proposed API still uses`mojom`-defined
`GenerateQRCodeRequest` and `GenerateQRCodeResponse`. This is a
bit icky in a C++ API, but facilitates code reuse in the period when
C++/mojom and C++/Rust implementations coexist.

- The Rust implementation may call `callback` synchronously.

Follow-up API changes if the Rusty QR Code Generator project is successful:
- Move definitions of `enum QRCodeGeneratorError`, `enum ModuleStyle`, `enum

LocatorStyle`, `enum CenterImage`, `struct GenerateQRCodeRequest`, `struct
GenerateQRCodeResponse` from `mojom` to `.h`

- Eliminate the GenerateQrCodeRequest and pass its values as parameters to
Generate(...) directly?

- Remove the Callback parameter from Generate(...) and return
base::expected<QrCodeResponse, QrCodeGeneratorError>. QrCodeGeneratorError
is removed from QrCodeResponse.

- Remove the `QrCodeGeneratorService` class and refactor the `Generate` member
function into a top-level free function (e.g. named `GenerateQrCode`).

Follow-up Views work
- The views QR bubble code requires careful C++ lifetime manipulation due to the

asynchronous QR code generation, and this complexity should be removed. This
item is likely owned by . Specifically, QRCodeGeneratorBubblePeter Williamson
relies on the fact that ~QRCodeGeneratorBubble tears down the Mojo remote,
which cancels any pending requests and avoids a UAF when the request completes.
QRCodeGeneratorBubble also has a whole partially-initialized starting state because
of the QR code generation request being asynchronous, which should be removed.

FFI solution
For calling Rust from C++, the project plans to use the `cxx` crate (which already is
integrated into Chromium’s build system and GN templates). This necessitates writing a
thin layer of Rust code that presents a simplified, FFI-friendly API on top of the API exposed
by the `qr_code` crate:

#[cxx::bridge]
mod ffi {

extern "Rust" {
fn generate_qr_code_using_rust(

data: &[u8],
min_version: i16, // plain integer instead of `Option<Version>`; -1 = no min

version
out_pixels: Pin<&mut CxxVector<u8>>, // plain `u8` instead of `Color` enum
out_qr_size: &mut usize,

mailto:petewil@chromium.org
https://cxx.rs/

) -> bool; // `bool` result + `out_…` parameters are used instead of `Result<T, E>`
}

}

Additionally (as pointed above in the “Requirement: API that can replace Chromium’s
QRCodeGenerator” section) the `qr_code` doesn’t directly support a `min_version`
parameter - this will be implemented as (calls into the `qr_code` crate are in bold):

fn generate(data: &[u8], min_version: Option<i16>) -> Result<QrCode, QrError> {
let mut qr_code = QrCode::new(data)?;

let actual_version = match qr_code.version() {
Version::Micro(_) => panic!("QrCode::new should not generate micro QR codes"),
Version::Normal(actual_version) => actual_version,

};

match min_version {
None => (),
Some(min_version) if actual_version >= min_version => (),
Some(min_version) => {

// If `actual_version` < `min_version`, then re-encode using `min_version`
qr_code = QrCode::with_version(data, Version::Normal(min_version),

EcLevel::M)?;
}

}

Ok(qr_code)
}

Some additional notes about the FFI experience have been gathered in a document here
(Google-internal, sorry).

Metrics

Newmetrics: Sharing.QRCodeGeneration.Duration…
There is no metric that measures the time it takes to generate a QR code. Existing metrics
include:

- metadata/sharing/histograms.xml metrics (not related to QR codes)
- PageActionController.QRCodeGenerator.Icon.CTR in metadata/page/histograms.xml
- Mobile.Share.QRCodeImage.Actions in metadata/mobile/histograms.xml
- Network.Cellular.ESim.InstallViaQrCode… in metadata/network/histograms.xml

https://docs.google.com/document/d/11QOjN6ryeL9P4ZCFp87QMJ3xgYsXPt58vb354aGBXm0/edit?usp=sharing

Therefore this project plans to introduce a new metric:
Sharing.QrCodeGeneration.Duration:

- The “Sharing” part is a bit inaccurate. “Sharing” is one feature area that depends on
QR code generation, but QRCodeGeneratorService is also used in other scenarios
and we plan to also cover these other scenarios in our measurements (example:
chrome/browser/ash/shimless_rma).

- The new metric will measure the time from the point just before calling
QRCodeGeneratorService::GenerateQRCode is called (this is a mojo call in the old
browser process code, the project will replace this with an in-process call).

- The new metric will measure the time until the point when
QRCodeGeneratorService (the C++ class executing in the Browser process, *not*
QRCodeGeneratorServiceImpl that implements the mojo interface and executes in
the utility process) calls the callback with GenerateQRCodeResponse (this is a mojo
response callback in the old code, the project will keep using the callback for API
compatibility but will call it synchronously).

- In the old code the bulk of performance impact is expected to come from having to
launch a utility process (and some from the IPC overhead). In the new code the
performance overhead is expected to be significantly lower (the FFI boundary is not
expected to have a measurable impact).

Additionally more granular metrics will be introduced to measure:
- Sharing.QRCodeGeneration.Duration.BytesToQrPixel2: Only the bytes -> QR

pixels time (i.e. the in-process time taken by `//components/qr_code_generator`
and/or by `//third_party/rust/qr_code`).

- Sharing.QRCodeGeneration.Duration.QrPixelsToQrImage2: Only the QR pixels ->
QR image time (i.e. the in-process time taken by the
`//chrome/services/qrcode_generator` layer to paint QR pixels (and a Dino and/or a
passkey) into a SkBitmap.

The expected impact of the project on the metrics above looks as follows:
- Avoiding a mojo call into a utility process should reduce

Sharing.QrCodeGeneration.Duration
- Replacing `//components/qr_code_generator` by `//third_party/rust/qr_code` may

regress Sharing.QRCodeGeneration.Duration.BytesToQrPixel and therefore may
indirectly affect Sharing.QrCodeGeneration.Duration. We expect a regression in
this metric, because the Rust library uses a different segmentation algorithm which
(compared to the C++ version) takes more time to compute a more optimal
segmentation. OTOH, this small regression should be paid back by bigger gains in
the end-to-end Sharing.QrCodeGeneration.Duration metric.

- No impact on Sharing.QRCodeGeneration.Duration.QrPixelsToQrImage is expected

Success metrics
This project is successful if the newly introduced `Sharing.QrCodeGeneration.Duration`
metric shows no regression. We aim for the low bar of “no regression”, because of the
improvements in code complexity (e.g. less first-code party code to maintain, no complexity
associated with mojo and asynchronicity). OTOH, we actually expect that this metric should
improve.

The project is not expected to directly impact the speed launch metrics.

Regression metrics

UMAmetrics
We will monitor the following UMA metrics:

- Browser process memory
- Memory.Browser.PrivateMemoryFootprint (TODO: there is no clear guidance

on the UMAs to use - in particular the “new memory UMAs” doc linked from
here seems abandoned? Still, the Canary+Dev experiments have highlighted
Memory.Browser.PrivateMemoryFootprint as a potential risk, so let’s monitor
this metric)

- Browser process jankiness via:
- Browser.MainThreadsCongestion
- Browser.Responsiveness.JankyIntervalsPerThirtySeconds3

- Stability metrics

Build times
The initial usage of Rust in Chromium may prompt questions about the impact on build
times. It is tricky to design an apples-to-apples comparison of Rust-vs-C++ build time,
because

● The cost of dependencies of the C++ QR code is amortized across all of Chromium
(e.g. the binary size impact and build-time impact of depending on the //base library
and/or the C++ standard library), while the cost of dependencies of the Rust QR
code will be largely specific to this project (because this will be one of the first
projects that will use Rust in Chromium)

● Third-party Rust (and C++) libraries (such as `qr_code` used in this project) are
expected to change infrequently - they should have no impact on incremental builds
in day-to-day work of Chromium developers.

● C++ and Rust builds have inherently different performance characteristics:
○ Without C++ modules, C++ build times are a function of how many tokens are

processed through all transitive includes, and our strategy to drive down that

https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit
https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit#

number has been somewhat haphazard and working around the standard
library. Rust build costs do not creep out beyond a crate in that same way.

○ Translation unit is typically bigger in Rust (crate) than in C++ (.cc file). In other
words, `rustc` is typically invoked less often, but on bigger inputs than `clang`.

Because of the above the Rusty QR Code Generator project does *not* plan to explicitly
measure or report build times. Measurements from the chrome://crash/rust project (the
first project shipping Rust code in Chrome) can be found in a doc here (Google-internal,
sorry).

We plan to give a heads-up to the ChOps team when landing a CL that adds the Rust crate
to Chromium build on the CQ, so they can monitor if the load of bots or CQ times are
impacted. We expect that the impact of the Rust code will be negligible compared to the
overall Chromium build. The relevant CLs and Chrome versions are:

- 2023-06-16: r1159176: 116.0.5838.0: enable_rust_qr on Linux and Android:
- 2023-06-19: r1159552: 116.0.5843.0: revert of: enable_rust_qr on Linux and Android
- 2023-06-22: r1161494: 117.0.5849.0: reland of: enable_rust_qr on Linux and Android
- 2023-07-11: r1168771: 117.0.5884.0: enable_rust_qr on Windows and Fuchsia
- 2023-07-13: r1169965: 117.0.5888.0: enable_rust_qr on MacOS
- ????-??-??: r???: 117.0.???.0: enable_rust_qr on ChromeOS

Binary size
The initial usage of Rust in Chromium may prompt questions about the impact on the size
of the Chrome binary. Comparing binary size is tricky - mostly because the cost of the base
C++ libraries is amortized across multiple components, while the cost of the base Rust
libraries will initially only support the QR crate (this is a bit similar to the disclaimer in the
previous section about comparison of build times).

We plan to measure the binary size impact/delta (as reported by the Chromium Binary Size
check on GerritSuperSize [see the example here from an unrelated CL]) for the following
planned changes:

1) Impact of including the Rust crate in Chromium build
2) Impact of removing the C++ implementation and mojo bits

Note that the measurements will exclude some of the cost of shipping Rust from the
chrome://crash/rust project (the first project shipping Rust code in Chrome) can be found in
a doc here (Google-internal, sorry).

We will use the results to inform future decisions around Rust.

Binary size impact on Android
Impact of enabling Rusty QR Code Generation on Android: increase of 22kB. This is based
on the official Chromium Binary Size CQ results from https://crrev.com/c/4509543 (OTOH

https://docs.google.com/document/d/1p0qxvpcxe39dHtrj-oExazI6GUTPLY3XqNCXk8w8p2c/edit?usp=sharing&resourcekey=0-0QSTmvytKTE-JnvSPNRqbg
https://crrev.com/c/4509543
https://chromiumdash.appspot.com/commit/2671028503c2e374dc354a8ebb090c62ca8299de
https://crrev.com/c/4625354
https://chromiumdash.appspot.com/commit/ee25826cfd18ee439c0552b5b0be8ff6ec57593a
https://crrev.com/c/4632898
https://chromiumdash.appspot.com/commit/6006e89bdfd5e003bd6acd5e316b45b5e620afdd
https://crrev.com/c/4667673
https://chromiumdash.appspot.com/commit/74d3c2a879bae46cc86c6144195a0fac119d77c3
https://chromium-review.googlesource.com/c/chromium/src/+/4679757
https://chromiumdash.appspot.com/commit/70fe4228c5b9c1599ef70de463163c46560a7474
https://chromium-review.googlesource.com/c/chromium/src/+/4684489
https://logs.chromium.org/logs/chromium/buildbucket/cr-buildbucket/8784800607465189553/+/u/Trybot_Results/Binary_Size_Details
https://docs.google.com/document/d/1p0qxvpcxe39dHtrj-oExazI6GUTPLY3XqNCXk8w8p2c/edit?usp=sharing&resourcekey=0-0QSTmvytKTE-JnvSPNRqbg
https://chromium-review.googlesource.com/c/chromium/src/+/4509543/13?checksRunsSelected=Chromium%20Binary%20Size&tab=checks

note that the results fluctuate quite a bit because they depend not only on the Rust code
but also on the effectiveness of LTO and other optimizations which depends on other
code).

Impact of removing the C++ implementation and mojo bits: saving of 10kB. This is based
on the official Chromium Binary Size CQ results from https://crrev.com/c/5091218.

Binary size impact on Windows
Impact of enabling Rusty QR Code Generation on Windows: https://crrev.com/c/4667673:

Note that I wasn’t able to build with `is_official_build = true` (trouble with “Rejected
profile data for Call_ReceiverIsNullOrUndefined_Baseline_Compact due to function
change”), therefore the results below don’t include PGO and LTO:

$ cat out/win/args.gn
is_official_build = true
is_chrome_branded = true
is_debug = false
target_os = "win"
use_goma = true

(Also note that along the way we fixed additional exports from `chrome.dll` caused
by https://crbug.com/1462356.)

Before the CL:

$ ls -l out/win/chrome.dll
-rwxr-x--- 1 lukasza primarygroup 254435328 Jul 10 17:50
out/win/chrome.dll

After the CL:

$ ls -l out/win/chrome.dll
-rwxr-x--- 1 lukasza primarygroup 254486016 Jul 10 17:44
out/win/chrome.dll

Binary size delta (again, note that this is *without* `is_official_build`):
254486016 - 254435328 = 50688 bytes.

Impact of removing the C++ implementation and mojo bits: TODO

https://chromium-review.googlesource.com/c/chromium/src/+/5091218?checksRunsSelected=Chromium%20Binary%20Size&tab=checks
https://crrev.com/c/4667673
https://crbug.com/1462356

Experiments
This project plans to launch using a Finch experiment.

Experiment results can be found in go/rusty-qr-experiments (Google-internal, sorry…). As
of Rusty QR Code Generator isOct 11, 2023

● enabled for 10% of the user population of the Stable release channel on Android,
Linux, MacOS, and Windows in M117+

● enabled for 50% of the user population of the Beta channel on ChromeOS in M119+

Rollout plan
Rollout plan: standard experiment-controlled rollout using Finch.

Planned name of a future experiment: “RustyQrCodeGenerator”.

Given the low triggering percentage of the feature, a Chrome analyst suggests (see a
Google-internal discussion here) to:

- Ask for approval directly for a higher percentage of Stable (say 10% or higher)
- Consider a careful launch with 28 days of data and 50% of Stable (to maximize the

number of clients that participate in the experiment).

Core principle considerations
Everything we do should be aligned with and consider Chrome’s core principles.

Speed
We plan to monitor the speed launch metrics. We expect that the project will have a
positive impact on the time needed to generate and display QR codes to the user. We
expect that the project will have no or minimal impact on Browser jankiness (this risk
comes from moving some processing from the utility process to the UI thread in the
Browser process, though this same functionality was originally located in the browser
process).

Simplicity
This project has no user-visible effects (other than the improved performance of generating
and displaying QR codes in the browser UI).

Security

http://go/finch-guide
https://goto2.corp.google.com/rusty-qr-experiments
http://go/finch-guide
https://groups.google.com/a/google.com/g/chrome-analysis-team/c/3WkcWz4tqaU/m/FxUAzPq4CAAJ
https://dev.chromium.org/developers/core-principles
https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit

The input for QR code generation may be untrustworthy - for example the input may be the
URL of the current page (such a URL may be controlled by an attacker that the page
belongs to). An attacker may use a maliciously crafted input (e.g. an URL) to attempt to
exploit bugs in the QR code generator (https://crbug.com/1177437 and
https://crbug.com/1520419 are examples memory safety bugs in the C++ implementation).
This can be done without requiring a navigation to the malicious URL.

The untrustworthy input is transformed into a QR image in two steps:
- Step 1: Translating untrustworthy input bytes (`base::span<uint8_t>`) into *simple*

QR pixels: a size and a vector of size x size pixels (each pixel is a boolean value
representing light or dark).

- We claim that the QR pixels are “simple” and therefore are safe to process
even if they originate from an untrustworthy input.

- Current API: base::span<uint8_t> data
- Proposed/new API: std::vector<uint8_t> data

- Side-note for security reviewer: currently size has type `int`. To clarify
intent it may be worth changing it to `size_t`, but this should have no security
impact, because the size returned from the QR code generator is never
negative and (in the current version of the QR standard) is at most 177 (size
of Version 40 of QR codes).

- Step 2: Translating QR pixels (booleans) into QR image (SkBitmap).
- The input for this step is

- QR pixels from the previous step
- Hardcoded (i.e. trustworthy) images of the Chrome dino and a

passkey
- The output from this step is a Skia image

- Current and proposed API: skia.mojom.BitmapN32
- Long-term API: non-mojo, C++ SkBitmap satisfying

SkBitmapToN32OpaqueOrPremul() (with SkColorType ==
kN32_SkColorType, a platform-dependent RGBA vs BGRA ordering of
4 bytes-per-pixel, with row stride == row width * 4)

Currently both steps are implemented in C++. Both steps run in a utility process because
of the Rule of Two (here we have: non-memory-safe language and untrustworthy input).

The Rust QR Generator project:
- Replaces step 1 with a call into a 3rd-party Rust crate
- Moves both steps out of the utility process / into the Browser process. This is okay

because:
- A memory-safe implementation of QR pixel generation in Rust means that

the Rule of Two is not violated when processing the untrustworthy input.
- Step 2 processes “simple” data

https://crbug.com/1177437
https://crbug.com/1520419
https://www.qrcode.com/en/about/version.html#:~:text=Information%20capacity%20and%20versions%20of%20the%20QR%20Code&text=%22Module%20configuration%22%20refers%20to%20the,(177%20%C3%97%20177%20modules).
https://source.chromium.org/chromium/chromium/src/+/main:skia/ext/skia_utils_base.h;bpv=1;bpt=1;l=57?q=skia&ss=chromium%2Fchromium%2Fsrc&gsn=SkBitmapToN32OpaqueOrPremul&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fchromium.googlesource.com%2Fcodesearch%2Fchromium%2Fsrc%2F%2Fmain%3Flang%3Dc%252B%252B%3Fpath%3Dskia%2Fext%2Fskia_utils_base.h%23uiGCaR2LasxoWOpWDYXJUIoaCW6aAet5tfjNgKpIpdU
https://source.chromium.org/chromium/chromium/src/+/main:chrome/services/qrcode_generator/public/mojom/qrcode_generator.mojom;l=79;drc=7ff77da5152fe84f47608cc86b8c9a91f10d7a3f
https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

For a security review of the 3rd-party `qr_code` crate please see the doc here:
go/qr-code-chromium-security-review (Google-internal, sorry)

Privacy considerations
This project is agnostic to the origin of the data. If QR codes encode privacy-sensitive data,
then it is the responsibility of other features (i.e. features using the QR codes generator to
encode such data) to consider the privacy impact and go through privacy review.

Testing plan
This section outlines tests that the Rust QR Code Generator project plans to depend on.
tests:

Manual tests

Test team
Note to test reviewer: Let’s discuss if the testcase below can be covered by the test team
in the next few releases.

Manual end-to-end smoke tests might be desirable, especially if the “golden” tests planned
below won’t pan out. A manual smoke test is the most desirable:

- Steps to execute in Chrome:
- Navigate somewhere (e.g. to https://example.com)
- Generate a QR code

- Desktop: focus the omnibox, click the qr code icon (kind of a square)
- Android: click the triple-dot-menu, click “Share”, click “QR Code”
- (Maybe, depending if it uses this code) iOS: tap the share widget in the

URL bar, drag the bottom panel up into view, tap “Create a QR Code”
- Other test steps:

- Scan the QR code using a different device (another Android device is fine, but
maybe using a non-Google device [e.g. an iPhone] would provide better
signal/coverage).

- Verify that the scanned QR code navigates to the right URL

Other notes:
- There is no platform-specific code under components/qr_code_generator nor

chrome/services/qrcode_generator, but in the initial release it may be worth running
the smoke test above on all platforms.

- TODO: long-url-test vs jankiness - has kindly suggested using:Charlie Reis
https://md5calc.com/hash/crc32/This+is+a+really+long+string+to+encode.

mailto:creis@chromium.org
https://docs.google.com/document/d/11J0-t6Taxy9b6TBTjWiMKtDY0yIi0d_yUYx67N_-UPA/edit?usp=sharing&resourcekey=0-0rf4kCMXbwIu8zOtnKrS2A
https://example.com
https://md5calc.com/hash/crc32/This+is+a+really+long+string+to+encode

TODO: can’t use the long-url test before switching to Rust (C++ supports only shorter
lengths)
TODO: do we need golden/pixeltest or just one-time/ad-hoc manual test?.

Dev team
We plan to verify that `EID:` and `FIDO:` examples produce reasonable segmentation. The
manual verification steps would look more or less like this:

- Use Rust code path to produce a QR code for an arbitrarily chosen EID: or FIDO:
URL.

- Open the generated QR image in a QR debugger (TODO: find a QR debugger that
can show segmentation breakdown)

Automated tests

//components/qr_code_generator/qr_code_generator_unittest.cc
We plan to preserve the following unit tests (i.e. use them to test/cover both C++ and Rust
implementations):

- QRCodeGenerator.Generate
- QRCodeGenerator.HugeInput

It is unclear if the QRCodeGenerator.ManySizes test is desirable in the long-term:
- The motivation for the test was a memory-safety bug in the C++ implementation:

https://crbug.com/1177437
- This test can time out when run against the Rust implementation.

- The test tries to encode increasingly long sequences of (non-alphanumeric)
bytes. The C++ implementation can at most output QR version 12, which
means the test covers lengths up to 288 bytes. The C++ implementation also
defines `kMaxInputSize = 700` (the theoretical maximum for digits-only input,
unlike in this unit test) which initially will be shared by the C++ and Rust
implementation..

- Amount of work needed to test the C++ implementation: 1 + 2 + … + 277 +
288 = 41616
Work for Rust: 1 + 2 + … + 277 + 288 + 289 + … + 698 + 699 + 700 = 245,350
(C++ * 5.8)

- Rust supports up to QR version 40, so in theory it can encode up to 2800
arbitrary bytes (or even larger digit-only inputs).

TODO: figure out if/how to preserve test coverage for the following aspects:
- components/qr_code_generator/qr_code_generator_unittest.cc

- QRCodeGenerator.Segmentation - is testing below the level of the public API
and therefore seems difficult to apply to the Rust version. Maybe the intent
of the test can be replicated by asserting that the output is not-too-big (this is

https://crbug.com/1177437

challenging, because at the public API level we can only detect discreet
bumps of the version/size number [width increases by 4 pixels for each QR
“version” increase], so e.g. everything between [say] version 5 and 6 looks
identical length-wise at this level]).

//chrome/services/qrcode_generator tests
AFAICT there is no coverage at this level before the Rust QR project (although individual
users may provide some test coverage via their tests). Therefore this project plans to add
the following tests:

- Smoke-tests via BrowserTests for each ModuleStyle, LocatorStyle,
CenterImage verify that things look okay end-to-end (without actually
inspecting the generated code and/or image in depth).

- Golden (pixel diff) tests
- The output of the QR generator should be deterministic.
- Rolling the QR generator library to a new version might force us to

regenerate and re-test the goldens. This is probably okay if the
number of goldens is limited.

- Info about Chromium golden test framework:
go/chrome-engprod-skia-gold (Google-internal, sorry). It seems that
the `pixel_browser_tests` target is Windows-only (this should be ok -
QR generation doesn’t have any platform-specific bits).

- Proposed goldens:
- Input - something easily verifiable manually - maybe a URL to

https://example.com?
- Golden #1 (see here):

- Circles and rounded squares in (ModuleStyle,
LocatorStyle)

- Dyno in CenterImage
- Golden #2 (see here):

- Squares in (ModuleStyle, LocatorStyle)
- Passkey in CenterImage

//third_party/rust/qr_code tests
`qr_code` crate’s native Rust tests will eventually execute on all appropriate Chromium bots
and platforms. This will happen as part of the broader effort to run tests of *all*
chromium/src/third_party/rust crates (this work is tracked under
https://crbug.com/1304772 and we expect that it will complete in H2/2023). In the
meantime we will rely on first-party test coverage outlined in the other sections above + on
the crate’s tests being run by GitHub Continuous Integration.

Test coverage has been measured using the following commands:

https://source.chromium.org/chromium/chromium/src/+/main:chrome/test/BUILD.gn;l=11010-11011;drc=7b39e4b13e832ac74ede0ef7113f2863a4c5a21d
https://example.com
https://chrome-public-gold.skia.org/detail?grouping=name%3DQrCodeGeneratorServicePixelTest_DinoWithRoundQrPixelsAndLocators_windows%26source_type%3Dgtest-pixeltests&digest=881fd6d4150a57c108f41e447551c59b&changelist_id=4437412&crs=gerrit
https://chrome-public-gold.skia.org/detail?grouping=name%3DQrCodeGeneratorServicePixelTest_PassKeyWithSquareQrPixelsAndLocators_windows%26source_type%3Dgtest-pixeltests&digest=32597149eaaa25f1a5a3564935fdfc5b&changelist_id=4437412&crs=gerrit
https://crbug.com/1304772

$ CARGO_INCREMENTAL=0 RUSTFLAGS='-Cinstrument-coverage'
LLVM_PROFILE_FILE='cargo-test-%p-%m.profraw' cargo test
…

$ grcov . --binary-path ./target/debug/deps/ -s . -t html --branch --ignore-not-existing
--ignore '../*' --ignore "/*" -o target/coverage/html
…

$ DISPLAY=:20 google-chrome-stable target/coverage/html/index.html

The test coverage is 97.12% (3512/316) line coverage.

Followup work

Post-launch cleanup
If the launch is successful, then:

- DONE: https://crrev.com/c/5091218:
- A significant part of the old code at components/qr_code_generator/… can be

deleted. Some tests will be reused + minimal code will remain for calling into
the Rust crate and making its output digestible by C++.

- Mojo-specific code can be deleted
- DONE: https://crrev.com/c/5147349:

- https://crbug.com/1334066: The old code does not support all QR versions
up to 40 (see here). This limits `QRCodeGenerator::kMaxInputSize` (currently
700, while version 40 can support ~5600 characters at medium
error-correction level). This limit can be raised when Rust is the only
remaining version of the QR generator.

- DONE: The public C++ API of chrome/services/qrcode_generator/… can be tweaked
to avoid having an asynchronous callback. See also the “Proposed public API
changes” section above. Note that QR code generation can take 9ms (TODO:
double-check this number with UMA) and therefore maybe it should be delegated to
a thread pool?

If the launch is a failure, then:
- The project’s code can be deleted with relative ease.

Opportunistic follow-ups
Notes about additional improvement opportunities if the project is successful:

- DONE(out-of-scope follow-up tracked in https://crbug.com/325664342):
chrome/browser/ui/views/qrcode_generator/qrcode_generator_bubble.cc adds a

https://crrev.com/c/5091218
https://crrev.com/c/5147349
https://crbug.com/1334066
https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator.cc;l=262-263;drc=e2a84ff06aea3da3fa697c0eff629b4d9347ffe9
https://crbug.com/325664342

“quiet zone” around the generated QR image, but other users of
chrome/services/qrcode_generator don’t.

- Motivation:
- This is an opportunity to unify the behavior and simplify code? (i.e. if

the “quiet zone” was handled underneath
chrome/services/qrcode_generator, then SkBitmap would be the only
output / there would be no need to also output gfx::Size)

- This is also an opportunity to prevent surprises - the generated image
may or may *not* scan successfully without the quiet zone. And not
every caller may know that the quiet zone is required.

- Implementation notes:
- This requires passing the background color (SkColor) as an argument

of the //chrome/services/qrcode_generator layer. (And if
background/quiet color, then we probably should also require
explicitly specifying the foreground color.)

- DONE: Once (or maybe “if” :-)) the API is synchronous, we should switch to
`base::expected<T, E>` (instead of an ad-hoc error-reporting convention used by
//components/qr_code_generator)

