
Spring 2021 MAE 106: 
Self Balancing Robot 
Final Report - Team 5 

 

Jose Mari U. Aquino 
Mechanical 
Engineering 

 

Barry Pham 
Aerospace 

Engineering 
 

Steven Young 
Mechanical 
Engineering 

 

 
Figure 1. Isometric view of the robot (left). Side view of the robot (right). 

 
 

 
 
 



System Description 
Design Concept 

Three Design Goals were determined during the manufacturing process of the 

self-balancing robot: the robot needed to be (1) Easy to Manufacture, have (2) Fast 

Corrective Motion, and (3) Account for Overcompensation.  

Design Goals 
1.​ Ease of Manufacturing: This goal was met by using primarily LEGO 

parts to construct the frame of the robot. Compared to other 

manufacturing methods such as 3D printing, LEGO parts were readily 

available and enabled rapid prototyping. LEGO parts could be easily 

switched out, varying gear ratios could be tested, and orienting 

electronics throughout the assembly was easier.  

2.​ Fast Corrective Motion: This goal was addressed by using a gear train 

to increase the speed transmitted from the servo to the wheels of the 

cart. It was important to increase the speed in this way to achieve fast 

corrective motion of the cart, as the Servo on its own could not provide 

the necessary speed. A gear train provided a higher output RPM than 

the Servo alone. 

3.​ Accounting for Overcompensation: This goal was met by increasing 

the length of the inverted pendulum. Adjusting the length of the 

inverted pendulum reduced the degree to which the proportionality 

controller would “overshoot” and oscillate. Reducing overshoot 

improved the robot’s ability to stabilize the pendulum. 

In the final product, the use of LEGO parts eased the fabrication process and 

the increased length of the inverted pendulum improved stability. However, the gear 

train did not produce the desired increase in speed for the robot to sustain its 

balance. 

 
 



Robot 
CAD Model 

 
Figure 2. Isometric View of Self-Balancing Robot.  

Servo powers the Driving Wheel to move the Robot back and forth. 
 

 
Figure 3. Side View of Self-Balancing Robot. 



 
Figure 4. Underside of the carriage. The grey wheels are the wheels powered by the 

servo via a gear train.. 

 
Figure 5. Exploded view of all the components of the robot. 

 
 



Fabricated Model 

 
Figure 6. Full view with Pendulum (Left). Side view of cart with Potentiometer and 

Driving Wheel visible (Right). 
 

 
Figure 7. Front view of cart with Arduino, Breadboard, and Wiring visible. 



 
Figure 8. Underside of carriage with Servo and Gear Train visible. 

 

Control Law 
The system was controlled using a Closed-Loop Control System. The Arduino 

would read the position of the potentiometer attached to the inverted pendulum, 

compare the reading to an internal constant value for the desired position of the 

potentiometer, and send a signal proportional to the difference between these 

values to the servo to achieve the necessary correction. 

  

Code 

#include <Wire.h>​
#include <Servo.h>​
#include <LSM303.h>​
#include <Filter.h> // Downloaded from the MegunoLink Library​
Servo servo;​
​
int servoPin = 9; //change to whichever pin the white wire goes to​
int servo_pos = 90; // starting servo position which is at rest​
​
float angleDes = 497; // the desired angle to which the compass heading 

will be compared​
​
unsigned long currentMillis;  // time in milliseconds​



unsigned long oldMillis;  // previous measurement of time in milliseconds​
​
float sampPeriod = 10; // Set to whichever value the Sample Period should 

be​
float angleResponse; // the response variable​
​
float kp = 1.5; //proportionality constant​
​
ExponentialFilter<float> FilteredReading(20, 0);​
​
void setup() {​
  Serial.begin(9600);​
  pinMode(9,OUTPUT); //switching pin to send data​
  Wire.begin();​
  compass.init();​
  compass.enableDefault(); //Set-up functions​
​
  servo.attach(servoPin);  //connect the servo to the pin​
​
 ​
  Serial.println("Done with setup!");​
}​
​
void loop() {​
  currentMillis = (float)millis();​
  if ((currentMillis - oldMillis) >= sampPeriod) //sampling rate​
  {​
    ​
    //Filtering the data​
    float angle = analogRead(A0); //reading the voltage from the ​
    FilteredReading.Filter(angle);​
    float reading = FilteredReading.Current(); //new filtered readings​
    ​
    servo_pos = kp *(angleDes - reading)+90; //Closed loop angle servo 

response​
    servo.write(servo_pos); ​
    ​
    //debugging values​
    Serial.print("90 ");​
    Serial.print(angleDes);​
    Serial.print(" ");​
    Serial.print(reading);​
    Serial.print(" ");​



    ​
    Serial.print("  ");​
    Serial.println(servo_pos);​
    oldMillis = currentMillis;​
  }​
} 

 

Testing and Development 
Performance Criterion  

A performance criterion that we experimentally optimized was the time it 
takes for pendulum to return to equilibrium given a disturbance. 

 
Experimental Parameter 

An experimental parameter that will be varied in this will be the length of the 
pendulum. Constant parameters will be the gain and the desired angle along with 
the degree of disturbance. 

 
Experimental Results (continues on next page) 

 



Experimental Results 

 
Figure 9. Trial Averaged response for each pendulum length 

For each different pendulum length, we had 10 trials. With this, we took the 
average results of each trial data and plotted the results of each of the different 
pendulum lengths as can be seen in the results above in Figure 8. Using this we can 
get an overview of the effect of the pendulum length on the time it takes for the 
pendulum to reach equilibrium 



 
Figure 10. Time required to reach equilibrium as a function of pendulum length 

From the data in the trials, we found the time that it took for the pendulum to 
reach equilibrium for each trial and then averaged each of them. The graphical 
results can be found in Figure 9 and as it can be seen there is a general parabolic 
shape to the graph. From this data, the most optimal length of the pendulum would 
be at the lowest point of the graph which  is 12 inches as it provides the shortest 
average time and with relative consistency.  


