
344 Section 4 Practice Worksheet Solutions

Entity Relationship Diagrams

Odegaard Library is in need of a new database, and they have asked you to help design it. Here are some of the requirements for what information needs to be stored in this database:

- Each book has a unique ID, a title, an author, a genre, and a number of pages
- Readers who visit the library have a unique email address, a first name, a last name, and an age
- Readers can "check out" multiple books from the library at a time, and one book can be checked out multiple times. We should keep track of the day that each book was checked out
- To make it easier to recommend books to readers, we should assign a recommended age for each genre
- 1. Design an ER diagram for the new library database.

2. Convert the ER diagram to a series of CREATE TABLE statements. Include primary key and foreign key statements.

```
CREATE TABLE Genres (
 name VARCHAR(20) PRIMARY KEY,
  recommended age INT
);
CREATE TABLE Books (
  id INT PRIMARY KEY,
 title VARCHAR(100),
 author VARCHAR(50),
 genre VARCHAR(20) REFERENCES Genres,
 num_pages INT
);
CREATE TABLE Readers (
  email VARCHAR(50) PRIMARY KEY,
 first name VARCHAR(20),
 last_name VARCHAR(20),
 age INT
);
CREATE TABLE Checkouts (
  day_check_out VARCHAR(10),
 book id INT REFERENCES Books,
 reader email VARCHAR(50) REFERENCES Readers,
 PRIMARY KEY (book id, reader email)
);
```

3. Convert the given E/R diagram to CREATE TABLE statements. Include primary key and foreign key statements.

```
Ingredient(<u>iid</u>, name, allergen)
Dish(<u>did</u>, name, description, category)
IngredientIn(iid references Ingredient, did references Dish)
Order(<u>oid</u>)
DishOrder(oid references Order, did references Dish, num)
```

Functional Dependencies

From the (fictional) relation below, identify all the functional dependencies. For each functional dependency, also determine the closure for the determinants (left side of A → B).

car_type	car_color	is_electric	is_yellow	license_plate
RedJeep	"red"	0	0	ABC1234
Tesla	"blue"	1	0	TES6520
McQueen	"red"	1	О	LIG0242
Sedan	"blue"	0	0	CAR9999
RedJeep	"red"	0	0	ABC1235

```
car_type → car_color, is_yellow, is_electric
car_color→ is_yellow
license_plate → car_type, is_yellow, is_electric, car_color
```

The following FD is optional - it holds true for the data here but might not hold if we add additional rows to the table.

is_electric → is_yellow

2. Given $R(\underline{A}, \underline{B}, \underline{C}, D, E)$ and the following queries give the closure of every element from the output of the query. Assume all attributes are integers. Give the closure of all elements of the output (i.e. A^+ , B^+ , C^+ , D^+ , E^+).

```
A) SELECT *
FROM R x
WHERE x.a = 20;

1. A<sup>+</sup> = {A}
2. B<sup>+</sup> = {A, B}
3. C<sup>+</sup> = {A, C}
4. D<sup>+</sup> = {A, D}
5. E<sup>+</sup> = {A, E}
```

- B) SELECT *
 FROM R x
 WHERE x.a = 20 and x.b = 30;
- A⁺ = {A, B}
 B⁺ = {A, B}
 C⁺ = {A, B, C, D, E}
 D⁺ = {A, B, D}

5. $E^+ = \{A, B, E\}$

C) SELECT *
FROM R x

WHERE x.a = 20 and x.b = 30 and x.c = 40;

A⁺ = {A, B, C, D, E}
 B⁺ = {A, B, C, D, E}
 C⁺ = {A, B, C, D, E}
 D⁺ = {A, B, C, D, E}
 E⁺ = {A, B, C, D, E}

BCNF Decomposition

Example: Decompose into BCNF - Restaurant(id, name, rating, popularity, rec)

- 1. id \rightarrow name, rating
- 2. rating \rightarrow popularity
- 3. popularity \rightarrow rec

This example is covered in both the section slides and the lecture slides.

Given R(A, B, C, D, E), and functional dependencies: $A \rightarrow C$, $BD \rightarrow A$, $D \rightarrow E$

```
1. Find the following closures: \{A\}+, \{B\}+, \{D\}+, and \{BD\}+
```

```
A^{+} = \{A, C\}
B^{+} = \{B\}
D^{+} = \{D, E\}
BD^{+} = \{A, B, C, D, E\}
```

2. Decompose R into BCNF. In each step, explain which functional dependency you used to decompose and explain why further decomposition is needed. Your answer should consist of a list of table names and attributes. Make sure you indicate the keys for each relation.

There are multiple ways to break down {ABCDE} depending on what FD you do first.

```
R1{ABCDE}
```

```
D -> E
R2{D, E} R3{A, B, C, D}
```

```
R1{ABCDE}
```

 $A \rightarrow C$

R2{A, C} R3{A, B, D, E}

D -> E

R2{A, C} R4{D, E} R5{A, B, D}

 $R1\{A,\,B,\,C,\,D,\,E\}$

BD -> ABCDE

This gives us back the original table. But because of our other FD's, this is not in BCNF. Use the other FDs to break this down further.