

Purpose​ 1

To run the finished product immediately​ 2

Introduction​ 3
“Scientific” vs. “Technical” molecule preparation​ 3

My simple AutoDock Vina workflow​ 5
Ligand scientific preparation​ 6
Protein scientific preparation​ 6
Docking​ 6
Helper scripts​ 7

Getting the template code and implementing the workflow​ 7
ftp_config​ 8
internal_autodockvina_contestant_protein_prep.py​ 9
internal_autodockvina_contestant_ligand_prep.py​ 11
internal_autodockvina_contestant_dock.py​ 14

Running your workflow​ 17
Installation​ 17
Running locally on test data​ 18
Running the weekly challenge​ 19
Setting up automatic weekly runs​ 19

Uploading the package to GitHub​ 19

Purpose
This document walks through the steps that created the internal_autodockvina_contestant
package using the CELPPade template. D3R runs this package each week to simulate a
participant using an AutoDock Vina-based pose prediction workflow. It is intended for:

●​ Users interested in running this package on their own machine
●​ CELPP participants who want to understand the CELPPade template
●​ CELPP participants who want to begin workflow development with an already-functional

package

https://github.com/drugdata/internal_autodockvina_contestant

To run the finished product immediately

Try our fast_setup script. It currently only works for 64 bit Linux, with the “git”, UCSF “chimera”,
and openbabel “babel” programs already in your PATH. To ensure a standard build, the script
will download local copies of Autodock Vina, MGLTools, RDKit, and the D3R software package.

fast_setup.sh

Make a clean anaconda build so we don't mess with the user's python

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
bash Miniconda2-latest-Linux-x86_64.sh -b -p miniconda2
source miniconda2/bin/activate
echo "source `readlink -e miniconda2/bin/activate`" > adv_celppade_env.sh

Install latest RDKit.
RDKit versions before 2016.03.01 can make rare ligand prep mistakes.
conda install -y -c rdkit rdkit-postgresql

Install core D3R utilities for challengedata handling
pip install d3r

#Install Autodock Vina
wget http://vina.scripps.edu/download/autodock_vina_1_1_2_linux_x86.tgz
tar -xvzf autodock_vina_1_1_2_linux_x86.tgz
echo "export PATH=`readlink -e autodock_vina_1_1_2_linux_x86/bin/`:\$PATH" >> adv_celppade_env.sh

Install MGLTools
wget http://mgltools.scripps.edu/downloads/downloads/tars/releases/REL1.5.6/mgltools_x86_64Linux2_1.5.6.tar.gz
tar -xvzf mgltools_x86_64Linux2_1.5.6.tar.gz
cd mgltools_x86_64Linux2_1.5.6
./install.sh
echo "export MGL_ROOT=`readlink -e .`" >> ../adv_celppade_env.sh
cd ../

Get the internal_autodockvina_contestant code
git clone https://github.com/drugdata/internal_autodockvina_contestant.git
You don't need to install the internal_autodockvina_contestant package

Load up the environment with the installed packages
source adv_celppade_env.sh

Test the build
cd internal_autodockvina_contestant/test_data
source test.sh

https://git-scm.com/download/linux
https://www.cgl.ucsf.edu/chimera/download.html
http://openbabel.org/wiki/Category:Installation

The script then runs on the test data. If successful, users should find 4 pairs of pdb and mol files
in the 5-pack_docking_results/celpp_weekXX_XXXX_dockedresults_XXXXX/1fcz folder. The
environment required to run this build can be recovered in a new terminal by running “source
adv_celppade_env.sh” in the top-level directory.

If a successful build is supplied with a registered CELPP user’s Box.com credentials (in the form
of an ftp_config file), then it is capable of running real challenge weeks and uploading the
results for scoring.

Introduction
This document is organized so that users can follow the creation of a CELPP participant
package using the CELPPade template. Also, users interested in beginning with a functional
(though very naive!) workflow and making small tweaks can read this tutorial to understand how
the internal_autodockvina_contestant package works.

CELPPade is designed to help you quickly jump into the CELPP challenge. It provides three
template files to automate receptor preparation, ligand preparation, and docking. CELPPade
also links in core D3R code to download weekly challengedata packages and upload your
predictions.

CELPPade is not a requirement for participation in CELPP. Your CELPPade-derived workflow,
though pre-formatted for GitHub, is not uploaded to GitHub by default. You have the option to
keep your code completely local/private if you so choose.

Participants benefit from uploading their CELPPade-derived workflow to GitHub in two ways:

1)​ GitHub is a state-of-the-art code management platform. It offers easy versioning,
approachable branching and forking, public bug reporting, and a clean interface to
integration testing services. These features significantly lower the barrier to creating
quality code and reproducible results.

2)​ Publicly sharing your workflow code on GitHub is an easy way to contribute to the
scientific community. Whether you’re a professional in molecular docking or just visiting
from another discipline, participation in CELPP is a great way to help improve
computer-aided drug design. Public code enables other scientists to credit your
contributions and carry forward your work.

“Scientific” vs. “Technical” molecule preparation

https://github.com/drugdata/internal_autodockvina_contestant

CELPP is about more than just docking. Starting from a receptor pdb file and ligand SMILES,
many decisions about molecule preparation have to be made before docking can be run. These
decisions include, for example, “how to generate 3D conformations of the ligand” and “whether
to keep solvent molecules in the binding site”. Each of these decisions is an open scientific
question. However, a hypothetical CELPP participant from a lab that focuses on ligand
conformer generation may not have a strong background in binding site solvent retention (or
any number of other molecule preparation decisions). For that reason, we have attempted to
discretize the steps in CELPP to make it easier to jump in and make improvements to an
existing workflow.

This first version of CELPPade represents our initial attempt at a flexible-yet-accessible
workflow template. It splits molecule preparation into “scientific” and “technical” phases.
“Scientific” preparation is loosely defined as “changing the information inherent in the structure”.
Examples of scientific molecule preparation include decisions to keep or remove solvent, atomic
charge assignment, protonation, atomic movements, and resolution of dual-occupancy residues.

“Scientific” preparation is contrasted with the subsequent “Technical” preparation stage, which
should handle processing of a generic file type in preparation to run a specific docking program.
Examples of technical preparation steps include conversion of structures to proprietary file
formats and grid generation for specific docking programs. The purpose of separating these
stages into different files is so that specialized researchers can easily insert their proposed
improvements into a common workflow and compare its performance.

Here’s an overview of the entire workflow. Downward-pointing arrows represent Python
functions, and boxes represent data files. Users implement their workflow in 5 functions split
across 3 scripts - protein_prep.py (green), ligand_prep.py (purple), and dock.py (blue) files. A
participant’s upload credentials (Box.com login information and SciCrunch ID) are saved in the
yellow ftp_config file.

My simple AutoDock Vina workflow

I recommend that you start off by documenting the commands that will run your workflow on the
command line for a single PDB file (protein.pdb) and ligand SMILES (ligand.smi). I’m going to
write the commands for my receptor prep, ligand prep, and docking separately.

Requirements: Chimera, openbabel, RDKit (python package), and MGLTools

Ligand scientific preparation

First, generate a single guess at a 3d structure of the ligand

$ python rdkit_smiles_to_3d_sdf.py ligand.smi ligand.sdf

Convert this structure to mol2 format

$ babel -isdf ligand.sdf -omol2 ligand.mol2

Use Chimera’s DockPrep to calculate charges

$ chimera --nogui --script "chimeraPrep.py ligand.mol2 prepared_ligand.mol2"

And use an AutoDockTool to convert the mol2 to pdbqt format

$ $MGL_ROOT/bin/pythonsh $MGL_ROOT/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_ligand4.py -l

prepared_ligand.mol2

Protein scientific preparation

Remove all non-receptor information from the PDB file

$ grep ATOM protein.pdb > stripped_protein.pdb

Generate charges and other small tweaks for receptor preparation

$ chimera --nogui --script "chimeraPrep.py stripped_protein.pdb prepared_protein.mol2"

And use an AutoDockTool to convert the mol2 to pdbqt format

$ $MGL_ROOT/bin/pythonsh $MGL_ROOT/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_receptor4.py -r

prepared_protein.mol2

Docking

Perform vina docking

vina --receptor prepared_protein.pdbqt --ligand prepared_ligand.pdbqt --center_x 30.662 --center_y

-2.264 --center_z 34.558 --size_x 10 --size_y 10 --size_z 10 --seed 999

Extract only the top pose from the 10 output structures

sed -e '/ENDMDL/,$d' prepared_ligand_out.pdbqt > top_pose.pdbqt

echo ENDMDL >> top_pose.pdbqt

Convert the top ligand pose to mol

$MGL_ROOT/bin/pythonsh $MGL_ROOT/MGLToolsPckgs/AutoDockTools/Utilities24/pdbqt_to_pdb.py -f

top_pose.pdbqt -o top_pose.pdb

babel -ipdb top_pose.pdb -omol top_pose.mol

Convert the protein to pdb (technically we didn’t allow for protein flexibility here so we could

just hand back stripped_protein.pdb, but I’ll write this for the more general case)

$MGL_ROOT/bin/pythonsh $MGL_ROOT/MGLToolsPckgs/AutoDockTools/Utilities24/pdbqt_to_pdb.py -f

prepared_protein.pdbqt -o docked_protein.pdb

Helper scripts
I’ve referenced two python scripts in the process. Here they are:

rdkit_smiles_to_3d_sdf.py chimeraPrep.py

Generates a naive 3D sdf file from a
ligand SMILES string.

import rdkit.Chem
import rdkit.Chem.AllChem
import sys

smiles = open(sys.argv[1]).read().strip()
mol = rdkit.Chem.MolFromSmiles(smiles)
molH = rdkit.Chem.AddHs(mol)
rdkit.Chem.AllChem.EmbedMolecule(molH)
rdkit.Chem.AllChem.UFFOptimizeMolecule(molH)

w = rdkit.Chem.SDWriter(sys.argv[2])
w.write(molH)
w.close()

A commandline script to call
Chimera’s DockPrep function using all
default settings.

import chimera
import sys
opened =
chimera.openModels.open(sys.argv[1])
mol = opened[0]

import DockPrep

DockPrep.prep([mol])
from WriteMol2 import writeMol2
with open(sys.argv[2],'wb') as of:
 writeMol2([mol], of)

Getting the template code and implementing the
workflow

CELPPade is distributed using a system called “cookiecutter”. Do not download CELPPade
using the “git clone” command - use the cookiecutter command below instead.

First, install cookiecutter itself:
$ pip install cookiecutter

Then make your cookiecutter version of CELPPade
$ cookiecutter https://github.com/drugdata/cookiecutter-pycustomdock.git​

Cookiecutter will prompt you to personalize your code by providing some information. The first
several prompts (class and program/package name) are important to distinguish your code on

GitHub. For the questions after “package_description”, we recommend that you accept the
default values (hit enter) unless you are an advanced user.

You will now have a new folder in the current directory. What’s inside? Here is how my
implementation of our internal AutoDock Vina contestant started out:

internal_autodockvina_contestant/

├── ftp_config
├── full_week_run
│ └── full_week_run.sh
├── internal_autodockvina_contestant
│ ├── __init__.py
│ ├── internal_autodockvina_contestant_protein_prep.py
│ ├── internal_autodockvina_contestant_ligand_prep.py
│ └── internal_autodockvina_contestant_dock.py
├── README.rst
├── setup.py
├── test_data
│ ├── celpp_weekXX_XXXX.tar.gz
│ ├── mini_pdb
│ │ └── fc
│ │ └── pdb1fcz.ent
│ └── test.sh
└── tox.ini

Underlined files are intended to be modified by participants

Now I’ll discuss how to implement our commandline workflow into each of these template files.

ftp_config

Contains your identifying participant information. This file is read by the challenge data
downloader (getchallengedata.py) and result uploader (packdockingresults.py) to access to your
personal submission directory. Only registered participants can successfully use these scripts as
they require Box.com and CELPP registration. However, unregistered participants can still
manually access the weekly challengedata folder via web browser.

When you are ready to start downloading challenge packages and uploading your predictions,
you should substitute the default values in this file with your Box.com username/password and
5-digit D3R contestant ID. If you requested multiple submission directories, the suffix for the
folder you intend to submit to should be included in this path. Unless you are an advanced user,
do not modify the “host” line.

https://app.box.com/files/0/f/7366014553/challengedata

If you later add your package to GitHub, make sure not to add this file, as it will contain your
Box.com password in plain text!

Example ftp_config file

host dav.box.com

user <your box.com email address here>

pass <your box.com password here>

contestantid <your D3R-assigned 5-digit ID, eg. 12345>

If you requested multiple submission directories, you should have a separate ftp_config for each
prediction workflow you will run. Each submission directory after the first will have an
underscore and suffix (eg “12345_2”), and you should add this to the contestantid field in that
workflow’s ftp_config.

internal_autodockvina_contestant_protein_prep.py
Contains the receptor_scientific_prep() function. If you do not overwrite this function, its default
behavior is to pass the unchanged candidate pdb file to the subsequent technical prep
functions. I’ll walk through how I put the original protein prep commands (orange) into the
Python workflow.

internal_autodockvina_contestant_protein_prep.py (excluding __main__())

Grey text is unchanged from the template file

Orange text is verbatim from the commandline sequences above

Green text is newly written and discussed below

#!/usr/bin/env python

__author__ = 'j5wagner@ucsd.edu'

from d3r.celppade.custom_protein_prep import ProteinPrep

import os

chimera_prep_text = '''

import chimera

import sys

opened = chimera.openModels.open(sys.argv[1])

mol = opened[0]

import DockPrep

DockPrep.prep([mol])

from WriteMol2 import writeMol2

with open(sys.argv[2],'wb') as of:

#1#

 writeMol2([mol], of)

'''

class chimera_protprep(ProteinPrep):

 """Abstract class defining methods for a custom docking solution

 for CELPP

 """

 ProteinPrep.OUTPUT_PROTEIN_SUFFIX = '.pdbqt'

 def receptor_scientific_prep(self,

 protein_file,

 prepared_protein_file,

 targ_info_dict={}):

 """

 Protein 'scientific preparation' is the process of generating

 a dockable representation of the candidate protein from a

 single-chain PDB file.

 :param protein_file: PDB file containing candidate protein.

 :param prepared_protein_file: The result of preparation should have this file

name.

 :param targ_info_dict: A dictionary of information about this target and the

candidates chosen for docking.

 :returns: True if preparation was successful. False otherwise.

 """

 with open('chimeraPrep.py', 'wb') as of:

 of.write(chimera_prep_text)

 os.system('grep ATOM ' + protein_file + ' > stripped_protein.pdb')

 os.system('chimera --nogui --script "chimeraPrep.py stripped_protein.pdb

prepared_protein.mol2" 1> chimeraPrep.stdout 2> chimeraPrep.stderr')

 os.system('. /usr/local/mgltools/bin/mglenv.sh; $MGL_ROOT/bin/pythonsh

$MGL_ROOT/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_receptor4.py -r

prepared_protein.mol2 1> prepare_receptor4.stdout 2> prepare_receptor4.stderr')

 os.system('cp prepared_protein.pdbqt ' + prepared_protein_file)

 return True

#2#

#3#

#4#

#5#

#6#

#7#

#8#

1.​ Because I wanted my short chimeraPrep.py script in the working directory, I’ve put all of
its code into a string at the top of the file. Even though the we’re writing a Python
function, the chimeraPrep.py code has to be run in Chimera’s Python interpreter, so I
can’t just run these commands inside of the scientific_prep function. Later, I’ll write this
short script to a file, and use a commandline call to run chimeraPrep.py through the
Chimera interpreter.

2.​ CELPPade requires participants to define an output file format from their scientific
preparation. For Vina, it’s useful to produce a “pdbqt“ file. Pre-defining the file type is
necessary and allows the workflow to ensure that the preparation was successful. Based
on this output suffix, the receptor_scientific_prep() function will be given a filename (input
argument “prepared_protein_file”) that it must produce in order for preparation to be

considered successful .This design choice improves the modularity of
CELPPade-derived code, as another user who uses this scientific prep can safely expect
a certain type of output.

3.​ This code writes the chimera_prep_text string to the file “chimeraPrep.py” in the current
directory. Each receptor is prepared in a new directory, so the script has to be rewritten
each time.

4.​ The input protein filename is defined by the “protein_file” argument to this function. I’ve
put all of my shell commands into os.system() calls. This mimics human commandline
input. I’m using os.system() because of its simplicity, but experienced Python users are
better off using the shutil or subprocess modules.

5.​ This line runs the chimeraPrep.py script through the Chimera script interpreter. It is very
useful to pipe stdout and stderr to files for debugging workflows.

6.​ This line runs the mol2-to-pdbqt conversion. My default environment does not include
certain environmental variables such as $MGL_ROOT, so the first part of this command
sources an environment script to set them.

7.​ This line takes the “prepared_protein.pdbqt” and copies it to have the correct filename. If
this file does not exist when the function is done running, CELPPade will consider the
scientific protein preparation to have failed.

8.​ The return value from this function can be used to self-report failure by returning False.
This may be useful if the participant does not want this receptor to move forward to
docking. In my case, I want every possible receptor to move forward, so this function
returns True.

internal_autodockvina_contestant_ligand_prep.py

Contains the ligand_scientific_prep() function. This is where the workflow initially converts ligand
SMILES to 3D representations. If you do not write this function, the subsequent technical step
functions will simply be passed the unchanged ligand SMILES file.

internal_autodockvina_contestant_ligand_prep.py (excluding __main__())

Grey text is unchanged from the template file

Orange text is verbatim from the commandline sequences above

Green text is newly written and discussed below

#!/usr/bin/env python

__author__ = 'j5wagner@ucsd.edu'

from d3r.celppade.custom_ligand_prep import LigandPrep

import os

#1#

rdkit_smiles_to_3d_sdf_text = '''

import rdkit.Chem

import rdkit.Chem.AllChem

import sys

if not(len(sys.argv)) == 3:

 print "python smiles2Mol.py inputSmiles outputSdf"

 sys.exit()

smiles = open(sys.argv[1]).read().strip()

mol = rdkit.Chem.MolFromSmiles(smiles)

molH = rdkit.Chem.AddHs(mol)

rdkit.Chem.AllChem.EmbedMolecule(molH)

rdkit.Chem.AllChem.UFFOptimizeMolecule(molH)

w = rdkit.Chem.SDWriter(sys.argv[2])

w.write(molH)

w.close()

'''

chimera_prep_text = '''

import chimera

import sys

opened = chimera.openModels.open(sys.argv[1])

mol = opened[0]

import DockPrep

DockPrep.prep([mol])

from WriteMol2 import writeMol2

with open(sys.argv[2],'wb') as of:

 writeMol2([mol], of)

'''

class chimera_ligprep(LigandPrep):

 """Abstract class defining methods for a custom ligand docking solution

 for CELPP

 """

 LigandPrep.OUTPUT_LIG_SUFFIX = '.pdbqt'

 def ligand_scientific_prep(self,

 lig_smi_file,

 out_lig_file,

 targ_info_dict={}):

 """

 Ligand 'scientific preparation' is the process of generating a

 dockable representation of the target ligand from its SMILES

 string.

 :param lig_smi_file: File containing SMILES for target ligand.

 :param out_lig_file: The result of preparation should have this file name.

 :param targ_info_dict: A dictionary of information about this target and the

candidates chosen for docking.

 :returns: True if preparation was successful. False otherwise.

 """

#2#

#3#

 with open('rdkit_smiles_to_3d_sdf.py','wb') as of:

 of.write(rdkit_smiles_to_3d_sdf_text)

 with open('chimeraPrep.py','wb') as of:

 of.write(chimera_prep_text)

 os.system('python rdkit_smiles_to_3d_sdf.py ' + lig_smi_file +

 ' ligand.sdf 1> rdkit_smiles_to_3d_sdf.stdout 2>' +

 ' rdkit_smiles_to_3d_sdf.stderr')

 os.system('babel -isdf ligand.sdf -omol2 ligand.mol2'

 + ' 1> lig_sdf_to_mol2.stdout 2> lig_sdf_to_mol2.stderr')

 os.system('chimera --nogui --script "chimeraPrep.py ' +

 'ligand.mol2 charged_ligand.mol2"' +

 ' 1> chimeraLigPrep.stdout 2> chimeraLigPrep.stdout')

 os.system('. /usr/local/mgltools/bin/mglenv.sh; pythonsh

$MGL_ROOT/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_ligand4.py -l

charged_ligand.mol2 1> prepare_ligand4.stdout 2> prepare_ligand4.stderr')

 os.system('cp charged_ligand.pdbqt ' + out_lig_file)

 return True

#4#

#5#

#6#

#7#

#8#

1.​ Similar to chimeraPrep.py, here we also need to generate 3D coordinates for a molecule.

This is a very basic way to do so with RDKit. In my experience, RDKit has had some
interesting behavior, so I insulate it from my ligand_scientific_prep() function by using an
os.system() call, and am able to capture its output (point #4#)

2.​ Vina requires both protein and ligand to be in pdbqt format. It is a coincidence that
receptor and ligand prep both produce pdbqt files in this example. There is no
requirement that they be the same.

3.​ First, we write our specialty scripts to local files so we can call them in subsequent
os.system() commands.

4.​ Again, the ligand in the real workflow will not be named “ligand.smi” like in our example.
The “ligand_smi_file” argument passed to this function will have the real ligand filename.
Note that in this and subsequent os.system() calls, the commands capture stdout and
stderr to files. This piping makes debugging much easier.

5.​ The same as in receptor_scientific_prep() - chimeraPrep.py is an exotic script that calls
Chimera’s DockPrep procedure, but requires a live Chimera session to do so.

6.​ Again, we require non-standard environment variables to be set to use the
prepare_ligand4 script from AutoDockTools. The command before the semicolon in this
string sources a shell script that sets up environment variables, and the command after
inherits its environment. Note that this environment would be “forgotten” if we ran two
separate os.system() commands - Any required environment variables must be set in the
same os.system() command as the command that requires them.

7.​ This line simply copies the final prepared ligand file (charged_ligand.pdbqt) to have the
appropriate output name, as given by the out_lig_file argument to the function. More
experienced users are directed to the shutil Python module.

8.​ Again, this function gives the option to self-report failure. We don’t have logic for failure
cases in this simple workflow, so we just always return True. CELPPade will still check
that the properly-named file was created and is of nonzero size.

internal_autodockvina_contestant_dock.py

Contains 3 functions - ligand_technical_prep(), receptor_technical_prep(), and dock().

internal_autodockvina_contestant_dock.py (excluding __main__())

Grey text is unchanged from the template file

Orange text is verbatim from the commandline sequences above

Green text is newly written and discussed below

#!/usr/bin/env python

__author__ = 'j5wagner@ucsd.edu'

from d3r.celppade.custom_dock import Dock

class autodockvina(Dock):
 """Abstract class defining methods for a custom docking solution
 for CELPP
 """
 Dock.SCI_PREPPED_LIG_SUFFIX = '_prepared.pdbqt'
 Dock.SCI_PREPPED_PROT_SUFFIX = '_prepared.pdbqt'

 def ligand_technical_prep(self, sci_prepped_lig, targ_info_dict = {}):
 """
 'Technical preparation' is the step immediate preceding
 docking. During this step, you may perform any file
 conversions or processing that are specific to your docking
 program. Implementation of this function is optional.
 :param sci_prepped_lig: Scientifically prepared ligand file
 :param targ_info_dict: A dictionary of information about this target and the
candidates chosen for docking.
 :returns: A list of result files to be copied into the
 subsequent docking folder. The base implementation merely
 returns the input string in a list (ie. [sci_prepped_lig])
 """
 return super(autodockvina,
 self).ligand_technical_prep(sci_prepped_lig,
 targ_info_dict = targ_info_dict)

 def receptor_technical_prep(self,
 sci_prepped_receptor,
 pocket_center,
 targ_info_dict = {}):
 """
 'Technical preparation' is the step immediately preceding
 docking. During this step, you may perform any file

#1#

#2#

#2#

 conversions or processing that are specific to your docking
 program. Implementation of this function is optional.
 :param sci_prepped_receptor: Scientifically prepared receptor file
 :param pocket_center: list of floats [x,y,z] of predicted pocket center
 :param targ_info_dict: A dictionary of information about this target and the
candidates chosen for docking.
 :returns: A list of result files to be copied into the
 subsequent docking folder. This implementation merely
 returns the input string in a list (ie [sci_prepped_receptor])
 """

 #return [sci_prepped_receptor, pocket_center]
 return super(autodockvina,
 self).receptor_technical_prep(sci_prepped_receptor,
 pocket_center,
 targ_info_dict=targ_info_dict)

 def dock(self,
 tech_prepped_lig_list,
 tech_prepped_receptor_list,
 output_receptor_pdb,
 output_lig_mol,
 targ_info_dict={}):
 """
 This function is the only one which the contestant MUST
 implement. The dock() step runs the actual docking
 algorithm. Its first two arguments are the return values from
 the technical preparation functions for the ligand and
 receptor. These arguments are lists of file names (strings),
 which can be assumed to be in the current directory.
 If prepare_ligand() and ligand_technical_prep() are not
 implemented by the contestant, tech_prepped_lig_list will
 contain a single string which names a SMILES file in the
 current directory.
 If receptor_scientific_prep() and receptor_technical_prep() are not
 implemented by the contestant, tech_prepped_receptor_list will
 contain a single string which names a PDB file in the current
 directory.
 The outputs from this step must be two files - a pdb with the
 filename specified in the output_receptor_pdb argument, and a
 mol with the filename specified in the output_ligand_mol
 argument.
 :param tech_prepped_lig_list: The list of file names resturned by
ligand_technical_prep. These have been copied into the current directory.
 :param tech_prepped_receptor_list: The list of file names resturned by
receptor_technical_prep. These have been copied into the current directory.
 :param output_receptor_pdb: The final receptor (after docking) must be
converted to pdb format and have exactly this file name.
 :param output_lig mol: The final ligand (after docking) must be converted to
mol format and have exactly this file name.
 :param targ_info_dict: A dictionary of information about this target and the
candidates chosen for docking.
 :returns: True if docking is successful, False otherwise. Unless overwritten,
this implementation always returns False
 """
 receptor_pdbqt = tech_prepped_receptor_list[0]
 ligand_pdbqt = tech_prepped_lig_list[0]

 pocket_center = targ_info_dict['pocket_center']

 vina_command = ('vina --receptor ' + receptor_pdbqt + ' --ligand ' +
 ligand_pdbqt + ' --center_x ' + str(pocket_center[0]) +
 ' --center_y ' + str(pocket_center[1]) +
 ' --center_z ' + str(pocket_center[2]) +
 ' --size_x 10 --size_y 10 --size_z 10 --seed 999 ' +
 ' 1> vina.stdout 2> vina.stderr')
 print "Running: " + vina_command
 os.system(vina_command)

 out_dock_file = ligand_pdbqt.replace('.pdbqt','_out.pdbqt')

 os.system("sed -e '/ENDMDL/,$d' " + out_dock_file + " > top_pose.pdbqt")
 os.system("echo ENDMDL >> top_pose.pdbqt")

 os.system('. /usr/local/mgltools/bin/mglenv.sh; python
$MGL_ROOT/MGLToolsPckgs/AutoDockTools/Utilities24/pdbqt_to_pdb.py -f top_pose.pdbqt
-o top_pose.pdb')
 os.system("babel -ipdb top_pose.pdb -omol " + output_lig_mol)

 os.system('. /usr/local/mgltools/bin/mglenv.sh; python
$MGL_ROOT/MGLToolsPckgs/AutoDockTools/Utilities24/pdbqt_to_pdb.py -f ' +
receptor_pdbqt + ' -o ' + output_receptor_pdb)

#3#

#4#

#5#

#6#

#7#

#8#

#8#

#8#

1.​ The dock.py file needs to know what kind of scientific prep to expect. Scientific prep
steps might, in the future, produce many file types, so here we specify which one we’re
looking for. The matching file for each gets copied into the technical preparation
directories.

2.​ Autodock Vina doesn’t require any kind of “exotic” technical ligand or receptor
preparation, so this code leaves the original template class in use. (Aside: it could be
argued that the mol2-to-pdbqt conversion in the scientific prep steps was “exotic”, and
that mol2 is the more “generic” format. By this logic, the mol2-to-pdbqt step could have
been performed in the technical_prep() functions in this file, instead of in the
scientific_prep() functions earlier)

3.​ We expect that technical prep may produce multiple required files. For that reason,
technical preparation functions return a python list of output filenames, all of which are
copied into the docking directory. These lists of filenames are inputs to the dock()
function. Since we don’t implement any technical preparation above, the default tech
prep function just passes in the scientifically prepared file for receptor and ligand.

4.​ You may have noticed that all of these functions receive an input called “targ_info_dict”.
This dictionary contains some useful information about the target structure and the
candidates. Here we read the pocket center coordinates from the dictionary. The pocket
center is calculated as the center of mass of the Largest Maximal Common Substructure
(LMCSS) ligand, and an example of a value is below. Information about the
crystallization pH,number of rotatable bonds, and other candidates may be useful for
designing more complex docking procedures.

targ_info_dict for 1fcz

{

'query': ['1fcz'],

'ph': ['7'],

'pocket_center': [40.252, 15.196, 84.399],

'ligand': ['156'],

'inchi':['InChI=1S/C24H26O3/c1-23(2)13-14-24(3,4)20-15-18(10-11-19(20)23)21(25)12-7-16-5-8-1

7(9-6-16)22(26)27/h5-12,15H,13-14H2,1-4H3,(H,26,27)/b12-7+'],

'rotatable_bond': ['4'],

'LMCSS': [{'lig_name': ['156'], 'chain': ['A'], 'cand_id': ['1fcz'], 'mcss_size': ['29'],

'resolution': ['1.38'], 'size': ['29']}],

'hiResHolo': [{'cand_id': ['1fcy'], 'lig_name': ['564'], 'resolution': ['1.3'], 'chain':

['A']}],

'SMCSS': [{'lig_name': ['REA'], 'chain': ['A'], 'cand_id': ['2lbd'], 'mcss_size': ['14'],

'resolution': ['2.06'], 'size': ['28']}],

'hiTanimoto': [{'cand_id': ['1fcz'], 'lig_name': ['156'], 'resolution': ['1.38'],

'tanimoto_similarity': ['1.0'], 'chain': ['A']}], 'size': ['29']

}

5.​ The commandline Vina call requires the pocket center coordinates, which will change for

each receptor. This line feeds in the appropriate coordinates for each docking candidate.
6.​ AutoDock Vina has a specific pattern for naming its docking output. Since our input

name is different for each receptor, I apply the pattern to each input filename to generate
the expected output filename.

7.​ We have to be a little bit hack-ish here to get the first pose from the docking output.
8.​ The workflow converts the top ligand pose and receptor to their final required filenames

and formats.

Running your workflow

Installation
Your CELPPade package itself does not need to be installed to run. In fact, we recommend you
don’t install it (to keep your PATH namespace simple in case you copy this workflow later).
However, you do need to install the “d3r” pypi package to run your CELPPade workflow. You
can install it with the command

$ pip install d3r

Running locally on test data

The cookiecutter code comes with a test_data folder. Inside is a shell script, test.sh, which runs
receptor prep, ligand prep, and docking on a single benchmark target, 1fcz. It is not necessary
for the entire workflow to be implemented before running test.sh -- In fact, it is helpful to run
test.sh as each CELPPade stage is being written to ensure correct output.

$ cd test_data

$ source test.sh

test.sh will simulate running a challenge week, but will only use local data, and will not upload
results to your Box.com submission directory. Each script file (protein_prep.py, ligand_prep.py,
and dock.py) will run in a separate directory (2-protein_prep, 3-ligand_prep, and 4-docking,
respectively) to facilitate debugging. Note that, in the interest of robustness, each of these three
stages will always run, independent of whether the previous stage failed for some/all targets.

If the workflow is successful, the 5-pack_docking_results folder should become populated after
completion of the test.sh script. When my workflow was complete, it looked like this:

5-pack_docking_results

├── celpp_weekXX_XXXX_dockedresults_XXXXX
│ └── 1fcz
│ ├── hiResHolo-1fcz_1fcy_docked.mol
│ ├── hiResHolo-1fcz_1fcy_docked.pdb
│ ├── hiTanimoto-1fcz_1fcz_docked.mol
│ ├── hiTanimoto-1fcz_1fcz_docked.pdb
│ ├── LMCSS-1fcz_1fcz_docked.mol

│ ├── LMCSS-1fcz_1fcz_docked.pdb
│ ├── SMCSS-1fcz_2lbd_docked.mol
│ └── SMCSS-1fcz_2lbd_docked.pdb
├── celpp_weekXX_XXXX_dockedresults_XXXXX.tar.gz
└── final.log

If this had been a real challenge week run, the file
celpp_weekXX_XXXX_dockedresults_XXXXX.tar.gz would have the X’s replaced by the
appropriate week, year, and contestant identifier, and would automatically be uploaded to my
submission directory.

Running the weekly challenge
If the workflow runs successfully on the test data and the ftp_config file is correctly filled out,
then you are ready to run a real challenge week. Real CELPP runs are performed in the
full_week_run folder. The full_week_run.sh code is almost identical to the test.sh, except that it
checks the CELPP challengedata folder on box to identify this week’s tar file, downloads it, and
then uploads your final result to your submission directory.

Most weeks have around 50 targets with 4-5 candidates each, meaning a total of 200-250
prep/docking jobs. On our machines, this takes 6+ hours.

When you are ready to run a weekly challenge, enter

$ cd full_week_run

$ source full_week_run.sh

The full_week_run.sh script will fail if the CELPP competition is not currently active. Recall that
the competition runs Sunday at 12:01 AM to Tuesday at 3:00 PM (U.S. West Coast Time).

Outside of this window, users can manually download an old challengedata package and use
that for more thorough testing. The CELPP evaluation server only downloads the most recent
week’s submission, so it’s fine if your test run uploads results from a previous week (however
these results won’t be evaluated).

Setting up automatic weekly runs
You might have better things to do at 12:01 AM on Sunday morning than start a CELPP
workflow. Look into schedulers that run on your operating system (eg. cron) to automate weekly
runs. If the workflow requires a special Python environment, be sure that the scheduler runs the
proper bin/activate script to enable it.

https://app.box.com/files/0/f/7366014553/challengedata

Uploading the package to GitHub
If you’re interested in sharing your code on GitHub, instructions for uploading a
cookiecutter-derived package can be found here:

https://cookiecutter-pypackage.readthedocs.io/en/latest/tutorial.html

https://cookiecutter-pypackage.readthedocs.io/en/latest/tutorial.html

	Purpose
	To run the finished product immediately
	Introduction
	“Scientific” vs. “Technical” molecule preparation

	My simple AutoDock Vina workflow
	Ligand scientific preparation
	Protein scientific preparation
	Docking
	Helper scripts

	Getting the template code and implementing the workflow
	ftp_config
	internal_autodockvina_contestant_protein_prep.py
	internal_autodockvina_contestant_ligand_prep.py
	internal_autodockvina_contestant_dock.py

	Running your workflow
	Installation
	Running locally on test data
	Running the weekly challenge
	Setting up automatic weekly runs

	Uploading the package to GitHub

