
Gateway API Releases

updated 2025-10-03

There are, as the saying goes, two kinds of software in the world: software that ships,
and software that is pointless.

Gateway API is, thankfully, the first kind of software. But of course, it’s not sufficient just
to release: we want high-quality, timely, predictable, low-stress releases:

●​ High-quality: no project can afford to break their production users.
●​ Timely: we want releases to show up every quarter. This doesn’t just reflect well

on the health of the project – we generally have to release in order for real users to
try out new things and give us feedback, so releasing frequently shortens our
development cycle and lets us more rapidly converge on the things that everyone
wants.

●​ Predictable: Gateway API is used by end users, but also by downstream projects
that need to add support for new Gateway API features in their codebases. We
don’t want to surprise the projects that help us succeed.

●​ Low-stress: as a community-driven project, we rely on people donating their time
and energy for the good of Gateway API, so we can’t afford to burn people out.

These are often at odds with each other, especially when we consider Kubernetes’
requirements around changes and CRD versioning! So, after looking at these four things
and at the Gateway API 1.4 release feedback, we’re proposing changes for the next
release.

Provisional GEPs

Instead of the beginning of a release cycle being voting on ideas that will then have GEPs
written, we’re going to start with ideas for which a Provisional GEP has already been
accepted. If you have an idea for an amazing thing, you need to write the GEP that says
what the idea is, who the idea benefits, and why we should include it Gateway API, and
you need to get that GEP merged as Provisional before it can be considered for
Experimental.

You’ll also need to get three implementations (or two, if it’s a mesh feature) to agree that
they’ll actually support it if it’s accepted into Experimental, which is likely to require
talking with people! and, of course, may mean that you’ll need to do some refinement of
your Provisional GEP. This may seem frustrating at first, but it’s likely to be an overall
win to know that things coming into experimental have already had enough thought put
into them that implementations are already engaged with them.

We also want to be very clear that Provisional GEPs are not limited to progressing during
the release cycle! GEPs can merge to Provisional at any time, and to consider a GEP for a
given release, it needs to be merged as Provisional before the start of that release.

For this next release, we will start by seeing how many proposals have been accepted
into Provisional and have sponsors. If there are more than the current number of open
Experimental slots (what a lovely problem to have!) either the maintainers will agree to
raise the number of Experimental slots, or we will vote as a community on which to
accept into Experimental.

Release Trains

So what happens if a GEP isn’t merged before the start of a release? For that matter, what
happens if we’re halfway through implementation and we realize that a given feature
has run into trouble?

To meet the four goals we listed above, it’s really critical that we be able to drop things
from a given release in order to allow the release to proceed in a predictable way. This
implies that we will set the date of a release, but allow the content to be flexible: as long
as we have stuff to release that improves the API (which we always should!), we’ll drop
things instead of delaying the release.

This also implies that it’s possible to get to a release date and have only bugfixes instead
of features. We should absolutely ship in that case - bugfixes improve the API! - but in
deference to SemVer, we’d release it as a patch rather than a minor bump.

Monthly Experimental Releases

The biggest change, though, is that we’re going to do experimental-channel releases
monthly, so that we have more chances to get feedback and more opportunity to iterate
quickly to get things to standard. The goal here is to make it possible to get new features
into and out of Experimental more quickly: if we make new experimental features
available for user feedback every month, we should be able to move them through the
process more quickly.

To make sure that the Experimental channel doesn’t get bogged down with things that
aren’t progressing, we will automatically remove GEPs from Experimental six months
after they enter Experimental state. Any meaningful progress forward to Standard will
reset the timer. (Note that this doesn’t imply that there will be no communication about
proposals not advanced before they’re dropped! Such proposals would, at minimum, be
discussed in the weekly calls, and “meaningful progress” can come from anyone – e.g. if

the GEP author isn’t editing the GEP but implementations are committing conformance
tests, that’s definitely meaningful progress!)

Note that this timer also applies to existing Experimental items from the v1.4.0
timeframe – if e.g. the Mesh resource makes no meaningful progress in six months, it’ll
get dropped.

These monthly releases are going to be very different from standard-channel releases:

Monthlies Are Snapshots

A monthly experimental release will simply be a snapshot of main. This implies that
monthlies never get bugfixes backported, and also that main needs to be kept in a
shippable state.

To emphasize the bugfix point: standard-channel releases will always have release
branches, so that if we find a bug affecting a standard-channel release, we can backport
the fix and do a patch release. Monthlies will never have a release branch, so that level of
fix is not possible: bugfixes in monthlies get delivered in later monthlies, which may
have other features as well.

Monthlies Don’t Use SemVer

Since monthlies are just snapshots, they’ll be named monthly-$year-$month, e.g.
monthly-2025-10. This is not a semantic version; breaking changes are permitted
between any two monthlies (though they should be done with care).

New Experimental Resources Still Use x-k8s.io and X-Names

For example, XMesh does not change its name, nor its API group – but neither do
TCPRoute and UDPRoute. Those two are experimental, but they’re not new, so we’re not
changing them.

Monthlies Are Still the Experimental Channel’s Content

Like our current experimental releases, monthlies include

●​ Resources that have graduated to GA API versions, including their
non-experimental fields;

●​ Resources that only have alpha API versions, including X- resources; and
●​ All experimental fields in all resources.

The point here is that you will get a functioning Gateway API installation if you just e.g.
kubectl apply monthly-2025-10-install.yaml; you will not need to apply a
standard-channel YAML file and then a monthly YAML file.

Making Monthlies Safer

Monthlies will inherit the long-standing challenge that it’s hard to make sure that
people using the experimental channel are aware of which features are experimental and
which are not. Knowing that a resource named “X-something” is experimental is one
thing; knowing which of the many fields in a v1 HTTPRoute are experimental is very
different, though. For example, if we add a MoonPhase stanza to HTTPRoute, many users
may simply see “oh, HTTPRoute is v1, all good!” and not read the fine print about
MoonPhase. We do not want people believing that experimental fields are actually
standard, though.

However, the biggest challenge with monthly experimental releases is that they will
offer more chances to break things, since the whole point of the monthlies is to let us
move faster. For example, suppose that monthly-2025-10 has a MoonPhase that’s an
int, but monthly-2025-11 changes it to a string. That’s allowed by the experimental
channel rules, but if you’ve installed monthly-2025-10 and you then apply
monthly-2025-11 on top of it, the API server will not be happy about that – and it may
be unhappy in unpredictable ways.

In a perfect world, we would deal with this by moving the experimental channel into a
separate API group, because that’s the only way to truly isolate the channels. In the real
world, though, this would place too much of a burden on implementations: the
Kubernetes API clients don’t have any support for this kind of channelized development,
which would require the implementations to duplicate a lot of code and then maintain
the duplications.

So, instead, we’ll lean on validating admission policies (VAP). This feature became GA in
Kubernetes 1.30, so it’s probably OK to rely on them for the experimental channel at this
point.

VAP for Upgrades

Every standard-channel release will include a VAP named
gateway-api-safe-upgrades that will prohibit the following:

●​ Installation of experimental CRDs on top of standard channel CRDs (within the
same API group)

●​ Installation of monthly releases

None

●​ Installation of older releases

Chihiro and Ian will have sufficient access to uninstall this VAP and then do whatever
they want (though it will be reintroduced the next time they install a standard-channel
release). Ana will all but certainly not have sufficient access to uninstall it; that’s
appropriate.

The VAP for upgrades will not block installing newer standard channel CRDs - that can
continue to be a low-friction process because of our compatibility guarantees.

VAP for Experimental Fields in GA Resources

All releases of Gateway API - including monthlies! - will include a VAP named
gateway-api-guardrails that will prohibit setting experimental fields in resources
that are part of standard channel unless they have added the following annotation to the
instance of the resource:

gateway.networking.k8s.io/unsafe-enable-experimental: reason

where reason is an arbitrary string supplied by the person creating the resource (for
example, a project name, so that they could easily find all the resources for that project).
Again, Chihiro and Ian will have sufficient access to uninstall this VAP if they want to
skip the annotation, but Ana will not. The VAP will be reintroduced on upgrades.

The Default Stance: Reinstall

Note that the guardrail VAPs don’t - and can’t - address the case where MoonPhase
changes types between monthlies. There’s really no good way to tackle this, so if you are
developing using monthlies, your default expectation should be that upgrading to a new
monthly may require you to delete all your CRDs and reinstall. We’ll try to minimize that,
but the assumption is that monthlies are used in development, and in development, it
shouldn’t be a big deal to delete and reinstall.

The Developer Experience

The combination here allows for some reasonable experiences.

●​ If you install the standard channel, you won’t see anything experimental at all, of
course.

http://gateway.networking.k8s.io/unsafe-enable-experimental

●​ If you install a monthly, the installed CRDs will include all experimental fields and
experimental resources, but the experimental functionality will not be available
to you unless you start annotating resources with
gateway.networking.k8s.io/unsafe-enable-experimental. Without the
annotation, you effectively have only the standard-channel functionality.

●​ Implementations SHOULD default to recommending that users of production
releases of their products should install standard channel Gateway API CRDs.

●​ Implementations SHOULD build production releases of their products against
standard channel modules. If an implementation builds against experimental
modules, that should still work, since

○​ we’re not allowed to change standard-channel elements in experimental,
and

○​ users of these implementations’ production releases really should be
installing standard channel CRDs, not experimental.

●​ An implementation working on support for a new experimental feature can
develop against experimental and, again, if the end user doesn’t annotate for
experimental fields, they’ll be harmless.

Timing

Our first planned monthly release is monthly-2025-10 on 27 October 2025. This is
ambitious: monthlies need to be automated and there’s a lot to be done.

Our next standard channel release - which, remember, has no number just yet - is
planned for 26 January 2026. Until we get closer, I’m going to refer to this release as
Osaka.

	Gateway API Releases
	Provisional GEPs
	Release Trains
	Monthly Experimental Releases
	Monthlies Are Snapshots
	Monthlies Don’t Use SemVer
	New Experimental Resources Still Use x-k8s.io and X-Names
	Monthlies Are Still the Experimental Channel’s Content

	Making Monthlies Safer
	VAP for Upgrades
	VAP for Experimental Fields in GA Resources
	The Default Stance: Reinstall

	The Developer Experience
	Timing

