
Note: This is a public document

Design: Task Resource Limits

Authors Greg Mann <greg@mesosphere.io>

Revision 1.1

 Status Draft

Introduction

User Impact Summary
Operators
Frameworks

Architecture Overview

Motivation

Related Implementations
Kubernetes

API

Goals

Non-Goals

Proposed API
Isolator Interface
Nested cgroups

Implementation: MVP
Common Code
Mesos Master
Mesos Agent

Mesos Isolator Interface
Cgroups isolator
Linux CPU Subsystem Isolator
Linux Memory Subsystem Isolator
Docker Containerizer
Default Executor

Mesos UI

Implementation: Stretch Goal

mailto:greg@mesosphere.io

Open Questions

Upgrades

Future Work

JIRA: MESOS-10001

Introduction

User Impact Summary

Operators
●​ Operators will be able to inspect tasks’ resource limits via the Mesos UI and operator

API

Frameworks
●​ Frameworks will be able to specify resource limits for tasks when submitting ‘TaskInfo’
●​ Frameworks will be able to specify the level of isolation they desire when launching task

groups - CPU and memory may be isolated at the executor container level, or the task
container level.

Architecture Overview

Motivation
1.​ Provide better support for tasks which exhibit a resource spike upon first launch,

followed by decreased resource requirements. This is especially an issue for memory,

https://issues.apache.org/jira/browse/MESOS-10001

where exceeding the resource allocation can have a more extreme effect on the task,
but could apply to CPU as well.

2.​ Increase overall resource utilization by allowing tasks which could make use of unused
CPU or memory to do so.

Related Implementations

Kubernetes

API
Operators can set resource “request” and “limit” on a container in a pod specification:

 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

The “request” is used for pod scheduling, and determines the minimum resources that must be
kept available for that container.

The “limit” is used while the pod is running to set a hard limit on the resource consumption of the
pod.

Goals
●​ Enable tasks and task groups to “burst” and take advantage of CPU and memory

beyond their bare-minimum requirement, when available on the agent
●​ Enable schedulers to specify a hard limit of CPU and memory, above which their

task/task group will never be allowed to consume
●​ Update the Linux CPU and memory isolators to create nested cgroups for nested

containers so that CPU and memory requests/limits are enforced on a
per-nested-container basis; design doc for this work can be found at this link.

https://docs.google.com/document/d/1sC0pneUJef_jG_VFsq-79-M4SjerPqH2CYPmEM5avf8/edit?usp=sharing

Non-Goals
●​ Allow schedulers to run “best-effort” tasks which request no minimum resources and are

allowed to “burst” into available CPU/memory headroom on the agent. This is kept as
future work in order to reduce the scope of this design.

●​ Allow schedulers to specify resource limits for executors

Proposed API
The resource “request” for CPU and memory of a task will be defined as the sum of all CPU and
memory resources present in the ‘resources’ field in ‘TaskInfo’. The CPU/memory request of a
task is the amount of CPU/memory which is guaranteed to be available to the task at all times.

The ‘TaskInfo’ message will be extended with a new ‘limits’ field which allows schedulers to
specify resource “limits” on their tasks:

●​ The ‘limits’ map will be restricted so that the only allowed keys are “cpus” and “mem”.
The resource limit for a task is the maximum amount of each resource that the task will
be permitted to consume.

message TaskInfo

{

 . . .

 map<string, Value.Scalar> limits = 15;

}

If the value of the limit for either CPU or memory is the IEEE “infinite” double value, then the
task will be permitted to consume as much CPU and/or memory as is available on the machine -
this is known as “unconstrained bursting”.

We use a ‘map’ field instead of ‘repeated Resource’ because the ‘Resource’ message contains
a lot of metadata that we don’t need in order to define resource limits. We make use of the same
type of map in the quota API for quota limits.

A new task status reason will be added for the case where a task is OOM-killed while exceeding
its memory request:

message TaskStatus

{

 . . .

https://en.wikipedia.org/wiki/IEEE_754-1985#Positive_and_negative_infinity
https://github.com/apache/mesos/blob/d10a33acc426dda9e34db995f16450faf898bb3b/include/mesos/v1/quota/quota.proto#L136

 enum Reason {

 . . .

 REASON_MEMORY_REQUEST_EXCEEDED = 35;

 }

}

The Mesos agent LAUNCH_CONTAINER call will also be updated with a ‘limits’ field:

message LaunchContainer {

 . . .

 map<string, Value.Scalar> limits = 5;

}

Isolator Interface
The ‘update()’ method of the Mesos containerizer’s isolator interface will be updated to
accommodate resource limits:

 virtual process::Future<Nothing> update(

 const ContainerID& containerId,

 const Resources& resources,

 const Option<std::map<std::string, Value.Scalar>>& limits = None());

Nested cgroups
The proposal in this document is coupled to another feature: the addition of nested cgroup
support in the CPU and memory cgroup subsystem isolators. As part of this work, a new
parameter will be added to the ‘LinuxInfo’ message:

message LinuxInfo {

 . . .

 optional bool share_cgroups = 8 [default = true];

}

The ‘share_cgroups’ field should only be set for task groups; in other words, this field should
only be set within subfields of the ‘LaunchGroup’ message. This will be validated at task/task
group submission time, so that any ‘TaskInfo’ for a command task or Docker task which contains

https://docs.google.com/document/d/1sC0pneUJef_jG_VFsq-79-M4SjerPqH2CYPmEM5avf8/edit?usp=sharing
https://docs.google.com/document/d/1sC0pneUJef_jG_VFsq-79-M4SjerPqH2CYPmEM5avf8/edit?usp=sharing

a ‘LinuxInfo’ which has this field set will be invalidated, and a TASK_ERROR status update will
be sent in response. If a framework does not set the ‘ExecutorInfo’ within
‘LaunchGroup.task_group.tasks’, the agent will copy the ‘ExecutorInfo’ into the tasks before
sending them to the executor so that the executor will know whether or not it should launch
them with nested cgroups.

Furthermore, a given executor may only use a single type of cgroup isolation. If a framework
attempts to submit the same executor ID with a different type of isolation in the future, it will be
invalidated.

The tables below summarize the cgroup behavior which will be observed by task groups in
various configurations:

 Task resource limit set Task resource limit not set

share_cgroups
== false

Nested container gets its own
cgroups, soft limits set to the
resource requests and hard limits
set to the resource limits. Task
resource requests and limits will
be counted into the executor
cgroup’s soft and hard limits
respectively.

Nested container gets its own
cgroups, both soft and hard limits set
to the resource requests. Task
resource requests will be counted
into the executor cgroup’s soft limits
and also hard limits.

share_cgroups
== true

TASK_ERROR Old behavior: task shares executor
cgroups, task resource requests will
be counted into the executor
cgroup’s soft limits and also hard
limits.

The tables below summarize the cgroup behavior which will be observed by tasks (not in a task
group) in various configurations:

 Task resource limit set Task resource limit not set

share_cgroups
is not set (it is
true by default)

Task shares executor cgroups,
executor cgroup’s soft and hard
limits will be set to task resource
requests and limits respectively.

Old behavior: task shares executor
cgroups, both the executor cgroup’s
soft limits and hard limits will be set
to task resource requests.

share_cgroups
is set

TASK_ERROR TASK_ERROR

Implementation: MVP

Common Code
Stout’s templated function ‘protobuf::parse(const JSON::Value&)’ will be updated to handle the
case where a JSON string value is being parsed to a Protobuf double. If the string is equal to
“Infinity” or “-Infinity”, then the appropriate IEEE-defined double values will be used.

Similarly, stout’s ‘NumberWriter’ in ‘jsonify.hpp’ will be updated to inspect the values of doubles
when writing, and write the strings “Infinity” or “-Infinity” when the double has the value of
positive or negative infinity.​

Mesos Master
The master’s validation code will be updated to:

●​ check that ‘TaskInfo’ only includes resource limits when the relevant agent possesses
the TASK_RESOURCE_LIMITS capability.

●​ check that ‘TaskInfo’s within a ‘TaskGroupInfo’ only include resource limits when the task
group’s executor is the DEFAULT executor, using TASK isolation (or a custom executor).

●​ check the ‘share_cgroups’ field in ‘LinuxInfo’ when checking for equality of ‘LinuxInfo’
messages.

●​ check that the ‘share_cgroups’ field within ‘LinuxInfo’ is only set to ‘false’ within
sub-messages that appear within ‘LaunchGroup’.

Mesos Agent
The agent will be given a new capability, TASK_RESOURCE_LIMITS. This capability will be
required for agent startup, and will be set by default.

The ‘ContainerConfig’ message will be extended to include the resource limits, if any,
associated with the container:

message ContainerConfig

{

 . . .

 optional map<string, Value.Scalar> limits = 16;

}

The agent’s LAUNCH_CONTAINER call chain will be updated to pass task limits through to the
containerizer when launching containers. This call chain will also be updated to enforce that a

twice-nested container (i.e. a container whose parent also has a parent) cannot specify
resource requests or limits. The only use cases for twice-nested containers are health checks
and nested container sessions, and in both of these cases it makes sense for the

Mesos Isolator Interface
The signature of the isolator ‘update()’ method will be updated to include resource limits:

virtual process::Future<Nothing> update(

 const ContainerID& containerId,

 const ContainerUpdateParameters& parameters,

 const Option<std::map<std::string, Value.Scalar>>& limits = None());

Existing isolators will also be updated to reflect this change of signature.

Cgroups isolator
The cgroups isolator’s ‘prepare()’ method will be updated to create nested cgroups for child
containers when ‘share_cgroups’ is set to true in ‘ContainerConfig’.

Linux CPU Subsystem Isolator
The CPU isolator’s ‘update()’ method will be updated to set the container cgroup’s ‘cpu.shares’
parameter according to the value of the container’s CPU request (the sum of all CPU resources
in ‘ContainerConfig.resources’). It will set the container cgroup’s ‘cpu.cfs_quota_us’ parameter
according to the value of the container’s CPU limit, if it exists. Note that the CFS quota will be
set regardless of the value of the agent’s ‘--cgroups_enable_cfs’ flag. If the container’s CPU
limit is not set, then CFS quota will be set according to the old behavior, where it depends on
the value of the agent flag.

Linux Memory Subsystem Isolator
The memory isolator’s update()’ method will be updated to set the container cgroup’s
‘memory.soft_limit_in_bytes’ parameter according to the value of the container’s memory
request. It will set the container cgroup’s ‘memory.limit_in_bytes’ parameter according to the
value of the container’s memory limit if it exists, or the container’s memory request if the limit
does not exist.

When there is enough memory pressure on a node that the OOM-killer is invoked, we would like
to ensure that task processes which are currently consuming more memory than their memory
request are preferentially killed first. To accomplish this, we can set ‘/proc/<pid>/oom_score_adj’
for each task process after it is forked. In the memory isolator’s ‘isolate()’ method, we will set the
‘oom_score_adj’ of a task to the following value, borrowed from the Kubernetes implementation:

1000 - (1000 * memoryRequest) / memoryCapacity

https://github.com/kubernetes/kubernetes/blob/v1.16.2/pkg/kubelet/qos/policy.go#L38:L78

This heuristic attempts to ensure that tasks which exceed their memory request have an
‘oom_score_adj’ value of 1000, putting them first in line to be OOM-killed.

Docker Containerizer
The Docker library’s ‘RunOptions’ will be extended with a member to hold resource limits, with a
corresponding argument to ‘Docker::RunOptions::create()’. ‘Docker::run()’ will be updated to set
the ‘--memory’, ‘--memory-reservation’, ‘--cpu-shares’, and ‘--cpu-quota’ flags accordingly.

The Docker executor will be extended to set the ‘oom_score_adj’ of task processes using the
‘--oom_score_adj’ flag for the Docker CLI.

The containerizer’s ‘update()’ method will be updated to set the CPU shares, CFS quota, and
memory hard/soft limits of a container to the values of its requests and limits when the ‘limits’
field is non-empty. This will be accomplished with the corresponding flags of the Docker CLI.

Default Executor
The default executor will be updated to use the LAUNCH_CONTAINER call instead of the
LAUNCH_NESTED_CONTAINER call when launching nested containers. This will allow the
default executor to set task limits when launching its task containers.

Mesos UI
The Mesos UI will be updated to display the resource requests and limits of tasks in the
executor detail view, where task resources are currently displayed.

Implementation: Stretch Goal
While the above method of setting ‘oom_score_adj’ for task processes should provide
satisfactory results in most cases, it will not be perfect. The calculation of process “badness” in
the kernel also takes into account things like a process’s running time and a process’s
capabilities. So there are likely certain sets of task configurations which, in the presence of
memory pressure on a node, will lead to the kernel OOM-killing a task which is not exceeding its
memory request before a task which is exceeding its memory request.

In order to provide a better guarantee that memory-bursting tasks will be OOM-killed before
tasks using less than their memory request, we could dynamically set the ‘oom_score_adj’ of
task processes. One mechanism for this is the cgroup notification API, and fortunately, Mesos
already has cgroup notification listeners via the ‘Listener’ class in ‘src/linux/cgroups.cpp’.

https://docs.docker.com/config/containers/resource_constraints/

As a stretch goal, if we have time while implementing we could update the memory isolator’s
‘isolate()’ method to create cgroup event listeners which are triggered whenever the memory
cgroup’s usage crosses the value of the container’s memory request. This will be done iff the
memory request is set to a different value than the memory limit. These listeners will trigger a
callback which inspects the container’s memory usage and sets the container process’s
‘/proc/<pid>/oom_score_adj’ value to 1000 when it has exceeded its memory request, or to zero
when it is below its memory request.

If we do this work, we should also remove code from the ‘prepare()’ method which sets the
‘oom_score_adj’ statically, if it’s already been added.

Open Questions
●​ How can we make REASON_CONTAINER_LIMITATION_MEMORY reliable? There is

currently a race between OOM notification and process reaping.

Upgrades
While a cluster is in a partially-upgraded state, it’s possible that an upgraded scheduler could
send a ‘TaskInfo’ which specifies resource limits to an upgraded master, while the agent on
which the task should be launched has not yet been upgraded. In such a case, the master will
fail the task launch and send a TASK_ERROR status update to the scheduler.

Future Work
●​ In the future, we could allow “best-effort” tasks which specify no resource request at all

for CPU and/or memory. Such a task could be launched on any agent regardless of
available resources, and the task would be free to make use of any unused CPU and/or
memory available on the agent.

●​ In the future, we could allow tasks to be run without specifying an executor at all. In such
cases, we would use the default executor and we would not constrain the resource
consumption of the executor container at all.

○​ Note that in order for us to still provide task group-level limits, this would require
us to have separate cgroups for the task group and for the executor (does the
executor need a cgroup at all in this case?).

●​ In the future, we could allow resource limits to be specified at the task group level. This
would allow the specification of task groups like “constrain containers A and B to 4
CPUs, but allow container C to use as much as is available”.

●​ In the future, we could add code similar to Kubernetes’ “eviction manager” to proactively
kill task processes to reclaim memory before the OOM killer is invoked.

	Introduction
	User Impact Summary
	Operators
	Frameworks

	Architecture Overview

	Motivation
	Related Implementations
	Kubernetes
	API

	Goals
	Non-Goals
	Proposed API
	Isolator Interface
	Nested cgroups

	Implementation: MVP
	Common Code
	Mesos Master
	Mesos Agent
	Mesos Isolator Interface
	Cgroups isolator
	Linux CPU Subsystem Isolator
	Linux Memory Subsystem Isolator
	Docker Containerizer
	Default Executor

	Mesos UI

	Implementation: Stretch Goal
	Open Questions
	Upgrades
	Future Work

