

B.Sc. (Hons) (Semester – 2nd)
PHYSICAL CHEMISTRY-II
Subject Code: BCHMS1-202
Paper ID: [19131610]

Time: 03 Hours

Maximum Marks: 60

Instruction for candidates:

1. Section A is compulsory. It consists of 10 parts of two marks each.
2. Section B consist of 5 questions of 5 marks each. The student has to attempt any 4 questions out of it.
3. Section C consist of 3 questions of 10 marks each. The student has to attempt any 2 questions.

Section – A **(2 marks each)**

Q1. Attempt the following:

- a. When does an extensive property become intensive properties?
- b. A gas absorbs 150 J of heat and expands against the external pressure of 1.10 atm from a volume of 1.0 to 4.0 L. Calculate the change in internal energy? (1 L atm = 101.3J)
- c. Why hydrogen and helium show heating in Joule-Thompson effect?
- d. Prove that C_p for an ideal gas is constant and nearly equal to 5 cal degree⁻¹ mol⁻¹
- e. The bond dissociation energy of gaseous H₂, Cl₂ and HCl are 430 kJ mol⁻¹, 242kJ mol⁻¹ and 427 kJ mol⁻¹ respectively. Calculate the enthalpy of formation for HCl gas.
- f. Show that $-(\Delta A)_T = W_{max}$.
- g. Give importance of measuring standard free energy change.
- h. Derive the relationship of equilibrium constant in terms of mole fraction (K_x) with K_p and K_c. Explain why K_x is generally not used for gaseous reaction
- i. How is lowering of vapour pressure related to osmotic pressure? Derive the relationship.
- j. Why is the boiling point of 0.1M BaCl₂ solution greater than 0.1 M sugar solution?

Section – B **(5 marks each)**

Q2. a. Derive an expression for the work done in the isothermal reversible expansion of a real gas

b. The heat of reaction for the formation of ammonia by Haber's process at 300 K was found to be -91.95 kJ. What will be heat of reaction for the formation at 323 K. The molar heat capacities at 300 K for N₂, H₂ and NH₃ are 28.45, 28.33 and 37.07 Jmol⁻¹ K⁻¹ respectively 3

Q3. a. What is meant by Maxwell relationship? Derive any two 3

(i) $(\partial U / \partial S)_p = T - P(\partial T / \partial P)_S$, (ii) $(\partial T / \partial P)_S = (\partial V / \partial S)_p$

(iii) $(\partial T / \partial V)_S = -(\partial P / \partial S)_V$

b. How can you test validity of third Law of thermodynamics? 2

Q4. a. Derive van't Hoff reaction equation (reaction isochore) giving the effect of temperature on equilibrium constant. 3

b. Give coupling of exoergic and endoergic reactions.. 2

Q5. a. Define Henry's law in terms of mole fraction of solute dissolved in the solution. How Raoult's law follow from it? 3

b. The normal boiling point of water is 100 °C. Its vapour pressure at 80 °C is 0.4672 atmospheres. Calculate the molar heat of vaporization of water 2

Q6. a. Give comparison of reversible isothermal expansion and reversible adiabatic expansion, 3

b. The equilibrium constant of a reaction becomes double of its value when the temperature is raised from 25 °C to 35 °C. Calculate ΔH° for the reaction. 2

Section – C **(10 marks each)**

Q7. a. What is Joule-Thompson effect? Prove that it is an isoenthalpic process. Define Joule Thompson coefficient and inversion temperature. What is the significance of inversion temperature in adiabatic expansion of real gas. 3

b. Distinguish between (i) isothermal and adiabatic process and (ii) isobaric and isochoric reactions. 2

c. Prove thermodynamically that for any substance 3

$C_p - C_v = [P + (\partial U / \partial V)_T] (\partial V / \partial T)_p$

e. Calculate the enthalpy of vaporization per mole for ethanol. Given that the entropy of vaporization of ethanol is 109.8 JK⁻¹ mol⁻¹ and boiling point of ethanol is 78.5°C. 2

Q8. a. Discuss the concept of residual entropy? How does it originate and how it is calculated? Calculate residual entropy of CO? 3

b. Derive Kirchoff's equation 2

c. Derive Clausius-Clapeyron equation for liquid-vapor equilibrium. Show how the equation can be expressed in integrated form. What are its important applications? 3

d. What is Nernst heat theorem? How does it lead to third law of thermodynamics. How does this law help in determination of absolute entropies of a substance at the required temperature? 2

Q9. a. A solution of 8.55 g of cane sugar (mol. wt. 342) in 100g of water freezes at -0.472°C and a solution of 7.24 g of an unknown substance in 100g of water freezes at -0.93°C . Determine the molecular weight of the unknown substance. 3

b. Derive Duhem Margules equation and outline its application to non-ideal solution's 3

c. Derive thermodynamically the law of chemical equilibrium 2

d. The equilibrium constant K_p for a reaction at 600 K and 620 K are 1×10^{-12} and 5×10^{-12} respectively. Considering ΔH to be constant in the above temperature range, Calculate ΔH and ΔS for the reaction ($R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$) 2