
Tweening Library 
 
Link to starting repo 

Starting point 
In the directory tests/TestingScene.tscn - A sprite is placed in the scene. It has a script 
scripts/TestingScene.gd attached where we can test our tweening library by interpolating e.g. 
position, rotation, scale and color modulation of the sprite. Some examples for each completed 
step are already there. 

Goal 
Functionality similar to Tween.interpolate_property(...) method. 
Tween — Godot Engine (stable) documentation in English 

Steps 
In the directory tweening_library/. 

Architecture overview 
-​ Tweens - A tween manager responsible for handling all the tweens. Might be an 

autoload or a scene instantiated, where the tweens are needed. 
-​ Has an array of all the running tweens. 
-​ Has a function for creating a tween. Parameters will be: 

-​ the target object, 
-​ name of the tweened property (of the target object), 
-​ (initial and) target value, 
-​ duration, 
-​ easing function, 
-​ callback function on end. 

-​ Periodically updates all the running tweens (progresses them in time). If a tween 
finishes, its callback is called and the tween is removed from the array. 

-​ CustomTween - A class representing a tween and all its properties including state. 
-​ Has fields for: 

-​ current progress (time) 
-​ Over this lab, it should gain fields for: 

-​ initial and target value, 
-​ total duration, 
-​ the target object, 

https://gitlab.com/gamedev-cuni-cz/gpp/tween-library
https://docs.godotengine.org/en/stable/classes/class_tween.html#class-tween-method-interpolate-property


-​ name of the property (of the target object), 
-​ current progress (time), 
-​ easing function, 
-​ callback on end. 

-​ Has a method which is called by the manager to progress the tween in time. 
-​ Will have an assortment of static easing functions to choose from. 

Tween manager 
Tweens.gd - The tween manager has an array of tweens and in the _process function it goes 
through all of them, updates them and removes the finished ones. The tween class needs a 
function for update and a function to determine whether it has finished. 

Tasks 
For each task, you shall uncomment only the appropriate line(s) in TestingScene.gd and then 
make it work as the comment above it. The vast majority of the modifications should go into files 
Tweens.gd and CustomTween.gd, specific tasks will mention when you need to modify 
different files. 

Task 1 - Tween class linearly interpolating between 0 and 1 
Just output the numbers between 0 and 1 over 1 second and then finish. 
 
All you need is a couple simple modifications to CustomTween.gd (add the counting 
functionality). 
GDScript basics — Godot Engine (stable) documentation in English (classes) 

Task 2 - Linear interpolation of numbers 
Print numbers from an initial value to a target value over a given duration. Just modify the script 
to work with user-given values. 

Task 3 - Linear interpolation of a specific property 
Very simple modification. Let’s apply the interpolated number to a specific property value of a 
given object - scale. 

Task 4 - Linear interpolation of any number/vector property 
We’ll accept as parameter a string name of a property. It has to be either Number or Vector2/3 
(both can be multiplied by a scalar value and so treated the same way, we’ll handle more 
complex types later). 

https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html#registering-named-classes


 
The name of the property is passed as an argument and, using a general setter, that property is 
interpolated. 
Unfortunately in GDScript, we cannot use a general setter to access individual components of 
Vector2/3 (because these instances are immutable). Therefore we need to interpolate a whole 
Vector2/3 (we have access to them via the setter). 
Object — Godot Engine (stable) documentation in English (set method) 

Task 5 - Choosing the easing function as a parameter 
Apart from linear interpolation, enable ease_in_quad, ease_out_quad and ease_in_out_quad. 
 
We could implement this in four possible ways: 

-​ Static functions - Every easing function has its own function, all the computation is nicely 
encapsulated. 

-​ However when we create a tween, we can pass a reference to a function 
(functions in GDScript are not first-class objects). 

-​ Or we can pass the name of the function as a string and then call the function 
based on the string using a general call function. 

-​ (In both cases we need to use a string with the name of the method which is not 
very convenient.) 

-​ Enum - An enum contains all possible easing functions. Arguments for the tween 
creation are much cleaner (no need for creating a reference to a function, convenient 
intelli-sense) but then we need a large match statement (switch-case) to compute the 
correct function. 

-​ Combination - We can use enum as a parameter and then use its values to index an 
array/dictionary of function names and call the function based on the string. This brings 
advantages of both approaches. 

Unfortunately an enum cannot be used as a type for a type hint but we can still get a reasonable 
intelli-sense. 
 
GDScript reference — Godot Engine (latest) documentation in English (match) 
GDScript basics — Godot Engine (stable) documentation in English (referencing functions) 
Object — Godot Engine (stable) documentation in English (calling function by string) 
GDScript basics — Godot Engine (stable) documentation in English (enums) 
Static typing in GDScript — Godot Engine (stable) documentation in English 

Task 6 - Interpolation of color 
Enable to interpolate color properties too. 
Similarly to the Vector2/3, we cannot use a general setter to access individual components of 
Color, and therefore we need to interpolate a color as a whole. 
Vector2 can be simply multiplied by a scalar, but for Color this is not possible and we need to 
handle it separately. 

https://docs.godotengine.org/en/stable/classes/class_object.html#id4
https://docs.godotengine.org/en/latest/tutorials/scripting/gdscript/gdscript_basics.html#match
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html#referencing-functions
https://docs.godotengine.org/en/stable/classes/class_object.html#class-object-method-call
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html#enums
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/static_typing.html#cases-where-you-can-t-specify-types


 
Color — Godot Engine (stable) documentation in English (linear_interpolate method) 

Task 7 - On end callbacks 
Functions in GDScript (from Godot 4) are now first-class objects! We can simply pass them as a 
parameter. Lambda functions function the same as referencing to class functions in GDScript, 
they do not need to be defined separately. 
 
GDScript basics — Godot Engine (stable) documentation in English 

Task 8 - Adding more easing functions 
Add more easing functions: 
ease_{in,out,in_out}_cubic 
ease_{in,out,in_out}_sine 
smoothstep3 
 
To add smoothstep, either derive it (and use Horner’s method!) or remember that it is a linear 
interpolation of ease_in_quad and ease_out_quad. 
 
 
Easing Functions Cheat Sheet (easings.net) 

Task 9 - Splines (with fluent syntax, method chaining) (AKA path 
following) 
Enable running tweens across more than 2 points. 
 
To accomplish this, add a function then_to on CustomTween which extends the spline with 
another part and returns the Tween object (fluent API). 
 
The tween then remembers all the target values of each part and from the time computes which 
part is now active. Duration and an easing function given in the tween constructor are used for 
every part of the spline (duration is divided evenly). 
 
E.g. when running a “position” tween over 2 seconds between points A, B, C; it should travel 
from A to B over 1 second and from B to C also over 1 second. 
 
Tweens.gd - The tween function should return the created tween so that it is possible to chain 
additional add_curve function calls. 
Method chaining - Wikipedia 
 

https://docs.godotengine.org/en/stable/classes/class_color.html#class-color-method-linear-interpolate
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html#referencing-functions
https://easings.net/
https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Method_chaining


Useful resources 
Easing Functions Cheat Sheet (easings.net) 
Interpolation — Godot Engine (stable) documentation in English 
Beziers, curves and paths — Godot Engine (stable) documentation in English 

Assets sources 
Kenney • Space Shooter Redux 
 

https://easings.net/
https://docs.godotengine.org/en/stable/tutorials/math/interpolation.html
https://docs.godotengine.org/en/stable/tutorials/math/beziers_and_curves.html
https://www.kenney.nl/assets/space-shooter-redux

	Tweening Library 
	Starting point 
	Goal 
	Steps 
	Architecture overview 
	Tween manager 

	Tasks 
	Task 1 - Tween class linearly interpolating between 0 and 1 
	Task 2 - Linear interpolation of numbers 
	Task 3 - Linear interpolation of a specific property 
	Task 4 - Linear interpolation of any number/vector property 
	Task 5 - Choosing the easing function as a parameter 
	Task 6 - Interpolation of color 
	Task 7 - On end callbacks 
	Task 8 - Adding more easing functions 
	Task 9 - Splines (with fluent syntax, method chaining) (AKA path following) 

	Useful resources 
	Assets sources 

