
Blink Workers [public]
Current architecture, implementation and future project ideas for Blink Workers.
kinuko@chromium.org
Last updated: Jul 2016

Web Workers in Blink
HTML5 Workers: Dedicated and Shared Workers
Service Workers
Compositor Workers
“Nested” Workers

Terminology
Life of a Worker
Process and Thread Model

Process Model
Thread Model

Worker Code in Blink
Worker Code Locations
Important Worker Classes
Adding a New Worker

Potential Future Projects

Web Workers in Blink
“Web Workers” is a Web platform feature that provides a background Javascript context and
allows any scripts to run in the background, usually on a separate thread from the main UI
thread.

There are several types of Web Workers implemented (and planned to be implemented) in
Blink. This document doesn’t provide details for each worker, but as of 2015 Oct Blink has
implementation for: dedicated worker [spec tutorial], shared worker [spec tutorial], service
worker [spec], and compositor worker [design doc]. There are also a few worker-like things
(or worklets) being designed and considered to be implemented, like isolated worker [spec]
(or Houdini worklet) and audio worker [spec].

HTML5 Workers: Dedicated and Shared Workers
Dedicated worker and shared worker are the two types of workers that are considered
“standard” workers, and are specified as a part of HTML5 [spec]. Most other workers are
modeled after these workers.

mailto:kinuko@chromium.org
http://www.w3.org/TR/2015/WD-workers-20150924/#creating-a-dedicated-worker
http://www.w3.org/TR/2015/WD-workers-20150924/#shared-workers
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html
https://docs.google.com/document/d/18GGuTRGnafai17PDWjCHHAvFRsCfYUDYsi720sVPkws/edit#heading=h.iy9r1phg1ux4
https://drafts.css-houdini.org/worklets/
http://webaudio.github.io/web-audio-api/#the-audioworker
https://html.spec.whatwg.org/multipage/workers.html

Dedicated workers, or just “workers”, are the most regular workers that run a script in the
background context that is tied (or “dedicated”) to their creator document. The lifetime of a
worker is basically tied to that of creator document.

Shared workers are identified by the URL of the script, and can be shared by multiple
documents running in the same origin. When a document calls the constructor of
SharedWorker, it may create a new worker or may connect to an existing worker if the worker
for the same script URL is already running. The worker context is kept alive while there are
more than one associated active document.

Service Workers
Service worker is a powerful new Web platform feature that allows a script to run in the
background as a network proxy, i.e. to intercept network requests from a set of associated
documents [spec]. A service worker can be shared by multiple documents running in the same
origin like shared workers, but its lifetime is not tied to that of any documents. Instead service
workers run in an event-driven fashion, and can be started (and then killed) whenever an event
is sent to the worker.

Compositor Workers
Compositor worker is yet another emerging Web platform feature that allows a script to do some
UI work, e.g. respond to input and update visual effects, but on a different thread from the main
UI thread, therefore without being janked by the main thread. More details about compositor
workers can be found in the design doc.

https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html
https://docs.google.com/document/d/18GGuTRGnafai17PDWjCHHAvFRsCfYUDYsi720sVPkws/edit#heading=h.iy9r1phg1ux4

“Nested” Workers
HTML5 Workers (and some other workers like service workers) can be actually created and
initiated by another worker, and they are called “nested workers”. They are currently not
supported in Chromium/Blink as of 2015 Oct (tracking bug: crbug.com/31666). Throughout this
document, a javascript context that is responsible for a worker context (e.g. a creator document
of the worker) is often simply noted as “parent document” or “associated document”, while it can
also be a worker in nested worker cases (which do not happen in the current Blink code base).

Terminology
When one says “worker” in Blink context there could be several possible meanings.

Worker context usually means a background javascript context where worker script runs.
Typically a worker context runs on a different thread from the main thread, and its thread is
called “worker thread”.

Worker thread refers to a thread where a worker’s javascript context, or “worker context” runs.
In most cases a worker thread is dynamically created when a new worker is created, and is shut
down when the worker is closed or killed. “Worker thread” also sometimes refers to
WorkerThread class in Blink, which usually corresponds to one underlying platform thread
(represented by WebThread in Blink) but sometimes not (i.e. in compositor worker case).
Worker’s different threading models are explained in the following section.

Worker object usually refers to a javascript “Worker” object, with which its associated
document(s) talk(s) to the worker. Note that worker object is instantiated in a worker’s parent
context (or associated context), which means that it usually lives on the parent context’s thread,
i.e. main thread in most cases.

Worker global scope refers to a global scope for a worker javascript context (while “window” is
a global scope for document javascripts). Worker global scope is defined as
WorkerGlobalScope interface in the Web Workers specification. APIs that are available to Web
workers are exposed in WorkerGlobalScope. Not all APIs available to window scope are
available in worker global scope, while some APIs are only available to workers [list of Web
Workers API].

Following figure shows conceptual relationships between worker context, worker thread, worker
object and worker global scope:

https://crbug.com/31666
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerThread.h&sq=package:chromium&type=cs&q=WorkerThread
http://www.w3.org/TR/workers/#the-workerglobalscope-common-interface
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Functions_and_classes_available_to_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Functions_and_classes_available_to_workers

Life of a Worker
Worker lifetime and its processing model differ across different worker types, but typically a
worker is started in a sequence like following:

1. A document creates a new worker object to instantiate a new worker.
2. Worker object then loads the worker script.
3. Once script is loaded, a new worker thread is created, whose main function then sets

up a new worker global scope as the global scope for the worker script.
4. Worker’s run loop is started on the worker thread and the worker script is evaluated.

When and how workers are shut down is also different across different worker types, but for
HTML5 workers worker termination happens when:

● Worker explicitly calls WorkerGlobalScope#close method,
● Parent document calls Worker#terminate method (dedicated worker only),
● All associated documents are closed and become inactive, or
● If document drops a reference to the worker object, the worker context has no pending

activity and GC starts and collects the worker object. (This part is currently being
discussed in https://crrev.com/1133713008)

All termination sequences except for the first one (WorkerGlobalScope#close case) are
triggered from the main thread, and therefore need to stop worker thread execution and join the
worker thread too.

Explanation here is abridged and may not be really accurate, more formal lifetime definition can
be found in the spec text.

http://www.w3.org/TR/workers/#dom-workerglobalscope-close
http://www.w3.org/TR/workers/#dom-worker-terminate
https://crrev.com/1133713008
http://www.w3.org/TR/workers/

Process and Thread Model
By definition all (or most of) workers basically run on a different thread from the main thread, but
different workers employ different process and thread model. Following table summarizes how
each worker is implemented and run in Blink:

 Process model Thread model

Dedicated Worker In-process Run on its own thread
(Worker context : thread = 1:1)

Shared Worker Out-of-process Run on its own thread
(Worker context : thread = 1:1)

Service Worker Out-of-process Run on its own thread
(Worker context : thread = 1:1)

Compositor Worker In-process Share a per-process single thread within a
process
(worker context : thread = N:1)

Isolated Worker In-process May run on the same thread as document
thread

Process Model
Workers can be roughly classified into two types by process model: in-process workers and
out-of-process workers.

In-process workers run in the same process as their corresponding document(s), therefore they
basically just add “additional threads” to the document(s).

Out-of-process workers may run in a different process from that of their corresponding
document(s). Typically when a worker needs to be shared by multiple documents
Blink/Chromium implements it as an out-of-process worker, since different documents in
different processes may need to talk to a single worker.

Implementation-wise in-process workers can talk to their documents within the renderer process
usually by posting tasks between worker thread and main thread, while out-of-process workers
needs to talk to their documents over IPC regardless of whether the workers are actually on a
different process or on the same process.

Thread Model
There are also differences across different types of workers in threading. Almost all workers run
on their own thread (i.e. worker context : worker thread = 1:1 relationship), while there are
exceptions: Compositor Worker runs on a per-process singleton thread regardless of the # of
contexts, therefore worker context : worker thread relationship is N:1. Also Houdini Worker
(Isolated Worker) is planned to run on the same thread as the document thread (so worker and
document share the same thread).

Worker Code in Blink
Common worker code that is used by multiple workers and code for “standard” workers (i.e.
dedicated and shared workers) are placed under core/workers, while other code that is specific
to a particular worker type lives in their own directories, e.g. modules/serviceworker for service
workers and modules/compositorworker for compositor workers.

Out-of-process workers (e.g. service worker and shared worker) need to talk to their associated
document(s) via IPC, therefore they also need code in chromium. For these workers glue
classes that talk to / from chromium are placed under Source/web and public/web directories.
(Note: these glue classes are likely to be refactored as blink code repository is now merged into
chromium code as of Sep 2015.)

Worker Code Locations
● third_party/WebKit/Source/core/workers/*

○ Common worker code (e.g. WorkerThread.*, WorkerGlobalScope.*)

○ Dedicated worker code (e.g. DedicatedWorker*)

○ Shared worker code (e.g. SharedWorker*)

● third_party/WebKit/Source/modules/serviceworkers/*
○ Service worker code

● third_party/WebKit/Source/modules/compositorworker/*
○ Compositor worker code

● third_party/WebKit/Source/web/*Worker*
○ Classes that implement public/web/ classes and are used by / talked from

chromium (e.g. ServiceWorkerGlobalScopeProxy, WebEmbeddedWorkerImpl, WebSharedWorkerImpl)

○ Classes that need to talk to chromium via public/web/* classes (e.g.
WorkerGlobalScopeProxyProviderImpl, ServiceWorkerGlobalScopeClientImpl)

● third_party/WebKit/public/web/*Worker*
○ Header files for classes that are are implemented by Blink and used by / talked

from chromium (e.g. WebEmbeddedWorker, WebSharedWorker, WebServiceWorkerContextProxy)

○ Header files for classes that are implemented by chromium and used by Blink (e.g.
WebServiceWorkerContextClient)

● content/{browser,child,common,renderer}/service_worker/*
○ Chromium code for service worker

● content/{browser,renderer}/shared_worker/*
○ Chromium code for shared worker

● content/child/worker_*
○ Chromium code for handling worker thread. They are used mainly for sending

and receiving IPCs to/from worker thread. For example storage API classes that
are available on Worker context and need to talk to browser process commonly
use these classes.

Important Worker Classes
Worker object classes, worker thread classes and worker global scope classes are the three
main important class families in common worker code. (What “worker object”, “worker thread”
and “worker global scope” refer to is summarized in the Terminology section.)

● Worker object classes
○ All worker object classes inherit from AbstractWorker class. This inheritance

doesn’t give much in implementation but follows the specification where
AbstractWorker interface is defined as a common base interface of HTML5
workers.

○ Worker object class for each worker type is implemented as: Worker for
dedicated workers, SharedWorker for shared workers, ServiceWorker for service
workers and CompositorWorker for compositor workers, respectively.

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/AbstractWorker.h&q=abstractworker&sq=package:chromium&type=cs
http://www.w3.org/TR/workers/#the-abstractworker-abstract-interface
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/Worker.h&q=worker&sq=package:chromium&type=cs
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/SharedWorker.h&q=sharedworker&sq=package:chromium&type=cs
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/modules/serviceworkers/ServiceWorker.h&q=serviceworker&sq=package:chromium&type=cs
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/modules/compositorworker/CompositorWorker.h&q=compositorworker&sq=package:chromium&type=cs

Worker object class hierarchy

● Worker thread classes

○ WorkerThread represents a thread for workers, or a worker thread. An instance
of this class usually owns one platform thread (via WebThreadSupportingGC
class), which can be accessed via WorkerThread::backingThread() accessor.
Each WorkerThread also initializes and uses one v8::Isolate for running worker
script completely separately from main thread scripts. (Note: in Blink v8::Isolate
is used to instantiate parallel multiple v8 environment for multiple threads, i.e. we
have one v8::Isolate for each thread that runs javascript.)

○ WorkerBackingThread represents a thread for workers. A WorkerBackingThread
owns a WebThreadSupportingGC and a v8::Isolate. Multiple workers can be
attached to one WorkerBackingThread (e.g., CompositorWorkers).

○ WorkerThread can be started by calling WorkerThread::start() and can be
terminated by calling WorkerThread::terminate().

○ Each worker type subclasses WorkerThread for its own type, e.g.
DedicatedWorkerThread for dedicated workers, SharedWorkerThread for shared
workers, ServiceWorkerThread for service workers and
CompositorWorkerThread for compositor workers, mainly in order to override
WorkerThread::createWorkerGlobalScope method.

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerThread.h&q=workerthread&sq=package:chromium
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerThread.h&l=70&q=backingThread
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8.h&l=5264&q=Isolate
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerBackingThread.h&q=workerbackingthread&sq=package:chromium&type=cs
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerThread.cpp&sq=package:chromium&type=cs&l=239&q=WorkerThread::start
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerThread.cpp&sq=package:chromium&type=cs&l=365&q=WorkerThread::terminate
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/DedicatedWorkerThread.h&sq=package:chromium&type=cs&q=DedicatedWorkerThread&l=41
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/SharedWorkerThread.h&sq=package:chromium&type=cs&q=SharedWorkerThread&l=41
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/modules/serviceworkers/ServiceWorkerThread.h&q=ServiceWorkerThread&sq=package:chromium&type=cs&l=41
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/modules/compositorworker/CompositorWorkerThread.h&q=CompositorWorkerThread&sq=package:chromium&type=cs&l=16
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerThread.h&sq=package:chromium&type=cs&q=createWorkerGlobalScope&l=131

 Worker thread class hierarchy

○ Most subclasses of WorkerThread only overrides createWorkerGlobalScope
method, while CompositorWorkerThread also overrides bunch of thread- and
v8::isolate-related methods, so that multiple CompositorWorkerThread’s can
share a single per-process platform thread and v8::Isolate.

● Worker global scope classes

○ WorkerGlobalScope is a common base class to represents a worker global
scope.

○ Similar to other worker classes, each worker type subclasses
WorkerGlobalScope for its own type, e.g. DedicatedWorkerGlobalScope for
dedicated workers, SharedWorkerGlobalScope for shared workers,
ServiceWorkerGlobalScope for service workers and
CompositorWorkerGlobalScope for compositor workers.

 Worker global scope class hierarchy

Adding a New Worker
Currently adding a new worker type to Blink basically requires adding its own Worker object
class, WorkerThread subclass and WorkerGlobalScope subclass. It’d be also necessary to add
binding code for the new worker global scope, e.g. in bindings/idl.gni and
bindings/scripts/v8_utilities.py.

If the new worker is in-process worker, it might also need to subclass WorkerMessagingProxy
in order to override WorkerMessagingProxy::createWorkerThread() to make it return its own
worker thread class.

If the new worker is out-of-process worker, starting and shutting down a worker will be likely
going to be controlled by IPC come from browser process or from another renderer process that
has its associated document. For example, shared workers do this by exposing
WebSharedWorker interface to chromium code. The WebSharedWorker class is implemented
by WebSharedWorkerImpl and has methods like startWorkerContext and
terminateWorkerContext. The former method (startWorkerContext) loads a worker script,
creates a new worker thread and eventually calls WorkerThread::start(), while the latter method

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerGlobalScope.h&q=workerglobalscope&sq=package:chromium&type=cs&l=64
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/DedicatedWorkerGlobalScope.h&q=DedicatedWorkerGlobalScope&sq=package:chromium&type=cs&l=45
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/SharedWorkerGlobalScope.h&q=SharedWorkerGlobalScope&sq=package:chromium&type=cs&l=45
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/modules/serviceworkers/ServiceWorkerGlobalScope.h&q=ServiceWorkerGlobalScope&sq=package:chromium&type=cs&l=56
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/modules/compositorworker/CompositorWorkerGlobalScope.h&q=CompositorWorkerGlobalScope&sq=package:chromium&type=cs&l=17
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerMessagingProxy.h&q=workermessagingproxy&sq=package:chromium&type=cs&l=50
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerMessagingProxy.h&sq=package:chromium&type=cs&q=createWorkerThread
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/public/web/WebSharedWorker.h&sq=package:chromium&type=cs&l=45&rcl=1446539338
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/web/WebSharedWorkerImpl.h&sq=package:chromium&type=cs&q=WebSharedWorkerImpl&l=67
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/public/web/WebSharedWorker.h&sq=package:chromium&type=cs&l=52&q=startWorkerContext
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/public/web/WebSharedWorker.h&sq=package:chromium&type=cs&l=62&q=terminateWorkerContext

(terminateWorkerContext) calls WorkerThread::terminate(). Service workers do similar via
WebEmbeddedWorker interface.

The new worker also needs to be hooked up into inspector, and the necessary changes also
vary depending on its process and thread model. In either way it will need to instantiate
WorkerInspectorProxy and hooks to the instance.

Potential Future Projects
There are many areas in which we can improve Blink Worker architecture and code base. A list
below shows excerpts from our backlog. Some are being planned and others are just discussed
but no active development. Any feedback / more ideas are always welcome!

● [Reliability] Worker termination should be graceful (Fixed in 2016 Q2)
○ Currently shutting down a worker from the main thread basically starts with a

sudden termination of v8 engine, which means that any code that touches v8 and
could be running on the worker thread might start getting null v8 handles. The
normal worker shutdown sequence could be probably made more graceful to
avoid unexpected null dereference. (Tracking bug: crbug.com/487050)

○ Fixed in 2016 Q2: The main thread avoids sudden termination of v8 engine as
much as possible. Instead, the main thread posts a delayed task to terminate the
v8 engine in case that shutdown sequence does not start on a worker thread in a
certain time period.

● [Performance] Sending data over MessagePort is slow
○ This is not only about worker code but about MessagePort implementation

general. Currently any messaging over MessagePort go across browser process
via IPC, regardless of whether the source and destination ports are in the same
process or not. This could add noticeable overhead on messaging between
document and dedicated workers, where transfer message often could be
important. There is also a related bug that we don’t currently support sending
transferable ArrayBuffers over MessagePort. (Related bug: crbug.com/334408,
design doc)

● [Code health] Worker is not WebFrameClient; Loader code should be factored out

from Frame code
○ In the current architecture, loading worker scripts needs a frame (or WebFrame)

regardless of whether we actually need a frame or not, because loader code is
deeply embedded into Frame and FrameLoader code. Because of this
architecture currently all out-of-process workers (i.e. shared and service workers)
are implemented as frame client (or WebFrameClient), and set up an almost
empty WebFrame (called ‘shadow page’) only in order to have a loader for the

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/public/web/WebEmbeddedWorker.h&q=webembeddedworker&sq=package:chromium&type=cs&l=45
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/workers/WorkerInspectorProxy.h&sq=package:chromium&type=cs&l=23&q=WorkerInspectorProxy
https://crbug.com/487050
https://crbug.com/334408
https://docs.google.com/document/d/17o_cjtc3Gk5cDZhoUc37EyhhvBb4wMlCROJvoC2Aokg/edit#heading=h.pojdlcrtjok7

worker. This is making the code more complex than necessary, and should be
redesigned and cleaned up. (Tracking bug: crbug.com/538751)

○ Currently worker team and loading team are considering working on this in a
collaborative way.

● [Code health] Adding a new worker is not easy, common worker code should be
cleaned up

○ As mentioned above currently adding a new worker requires a lot of
copy-and-paste like workflow across multiple directories. This was good when
we only had two or a few workers, but it starts to look cumbersome as we’re
adding more workers. Now that we have better idea about what parts are
commonly used we could factor out and clean up common worker code more.
Also we could probably add a bit more support in binding generator scripts.

● [Code health, Performance] More thread isolation: Detaching worker
loader/networking code from main thread

○ Currently worker loader code and most of networking API code is going through
the main thread for sending and receiving data to/from the browser process.

○ This does not only make the code complex but also could lead to performance
issues: having worker rely on the main thread means that workers could be
blocked when the main thread is busy, and also worker code could be a source of
jank on the main thread.

○ To give more contexts, in the past most of API implementation for workers used
to go through the main thread like loader and WebSocket do today, but we have
been fixing this pattern and now most of worker API code directly send/receive
IPC to/from browser process without going through the main thread.

○ We should probably do similar refactoring and make the loader and networking
code more independent from the threading assumptions.

○ Related tracking bugs are: crbug.com/397403, crbug.com/443374

● [Feature] Cross-origin messaging support
○ There seem to be a need for supporting generic cross-origin messaging to/from

out-of-process workers (i.e. shared and service workers) so that it becomes
possible to run a single worker for caching and providing data to multiple
documents. Currently a similar feature that focuses more on handling
cross-origin network requests is being discussed and implemented as Foreign
Fetch in the service worker context.

● [Reliability] Better thread safety
○ Majority of Blink code is single-threaded, but workers require multi-threaded code

and it is not very easy to write thread-safe code in Blink, because fundamental
classes like String is not thread-safe. Many crash/security bugs due to
thread-safety issues have been fixed and we have better utility templates (like

https://crbug.com/538751
https://crbug.com/397403
https://crbug.com/443374
https://wiki.whatwg.org/wiki/Foreign_Fetch
https://wiki.whatwg.org/wiki/Foreign_Fetch

threadSafeBind) for cross-thread task posting now, but the current architecture is
still error-prone and writing new cross-thread can easily introduce new
thread-safety bugs.

○ One way to tighten up this situation would be to annotate all thread-unsafe
classes that could be transferred to another thread, and to statically and
dynamically verify that they are correctly handled by the cross-thread object
handling code. (Design doc)

○ Also now that we are considering using more base/ code in Blink, we should start
thinking about how we could make the chromium’s Bind and Callback work safely
with racy Blink classes. (Discussion thread)

● [Feature] Support nested workers
○ As is mentioned in the “Nested” Workers subsection, Blink/Chromium currently

doesn’t support nested workers, or a worker creating another worker. This one
has kept getting lower priority as we didn’t have very strong use case for this, but
we probably need to periodically review the priority so that we can start
re-prioritizing this once it becomes more needed. (Tracking bug:
crbug.com/31666)

https://docs.google.com/document/d/1mGPT6ypz9ZBEbD0KpZ4J4fvhI195TAwtlql0VwI6Wbs/edit#heading=h.3iebe9rty6vw
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/rjy64WpOfSc
https://crbug.com/31666

	Blink Workers [public]
	Web Workers in Blink
	HTML5 Workers: Dedicated and Shared Workers
	Service Workers
	Compositor Workers
	“Nested” Workers

	Terminology
	Life of a Worker
	Process and Thread Model
	Process Model
	Thread Model

	Worker Code in Blink
	Worker Code Locations
	Important Worker Classes
	Adding a New Worker

	Potential Future Projects

