AARC

Guidelines for Establishing Trust between
AARC-compliant AAIl services using
OpenlD Federation (AARC-G100)

Publication Date [2025-10-20]

Authors: Diana Gudu (ed), Halil Adem, Federica Agostini, Valeria Ardizzione, Thomas Dack,
Konstantinos Georgilakis, Marcus Hardt, Jens Jensen, lvan Kanakarakis, Christos Kanellopoulos, Andreas
Kozadinos, Nicolas Liampotis, Nick Mastoris, Jan Pavli¢ek, Mischa Sallé, Hannah Short, Michal Stava, Klaas
Wierenga, Gabriel Zachmann

Document Code: AARC-G100

DOI: 10.5281/zenodo. 17054048
Community: Architecture Area
Abstract

This specification provides guidance for enabling interaction and establishing trust among AARC-compliant
entities such as OAuth 2.0 Authorization Servers (AS) and Resource Servers (RS) residing in distinct domains.
These interactions are facilitated through trusted third parties referred to as Trust Authorities, which are entities
issuing authoritative statements about entities that participate in an identity federation. The federation uses
OpenlD Federation. This document is intended for operators and implementers of AAl services and defines two
trust profiles: G100.1 (Basic Trust Model), specifying the minimum requirements for establishing trust between
proxies using OpenlD Federation trust chains, and G100.2 (Fine-Grained Trust Model), which extends the basic
model with policy-based trust through the use of Trust Marks and metadata policies.

(0 @

This document is licensed under a Creative Commons Attribution 4.0 license.

https://creativecommons.org/licenses/by/4.0/

AARC

1 Introduction 3
1.1 Notational Conventions 3

1.2 Terminology 3

1.3 Scope of this document 4

2. Trust Model 4
3. OpenlID Federation 7
3.1 OpenID Connect Client registration 8
3.2 Trust Marks 9

4. Establishing trust using OID-Fed in the context of the AARC BPA 9
G100.1 Basic Trust Model 10
G100.2 Fine-grained trust model 11

5. Trust Establishment (technical flow) 1"
5.1 Onboarding process 11
5.2 Entity Configuration 13
5.3 Resolving Trust 14
5.4 Client registration 20

6. Federation Policies 21
7. Implementation Considerations 22
7.1 Configuration 22
7.1.1 Trust Authority 22

7.1.2 Trust Mark Issuer 23

7.1.3 SP-IdP-Proxy 23

7.2 Federation Topologies 24
7.3 Performance considerations 25

8. Security Considerations 26
References 26
Appendix A - Federation Policies 28
A.1 Examples of Trust Marks 28
A.2 Example of a (decoded) Subordinate Statement Including Metadata Policies 28
Appendix B - Example Entity Configurations (decoded) 30
B.1 Trust Authority 30
B.2 Trust Mark Issuer 32
B.3 Proxy with OP and RP roles 32
Appendix C. Summary of required Features 35

AARC

1 Introduction

This document provides normative guidance for enabling interaction and establishing trust
among AARC-compliant entities such as OAuth 2.0 Authorization Servers (AS) and
Resource Servers (RS) residing in distinct domains. These interactions are facilitated
through trusted third parties referred to as Trust Authorities, which are entities issuing
authoritative statements about entities that participate in an identity federation. This guideline
assumes that the federation uses OpenID Federation and it complements the [AARC-I058]
informational document. 1058 explores multiple approaches for establishing trust, and selects
a single approach to focus on, the recommended approach 6. Federation Entity Discovery.

The document is a baseline about what is required to establish trust between proxies. It is a
profile for using OpenlD Federation with AARC-compliant entities (traditionally called SP-IdP
Proxies, nowadays better understood as RP-OP-Proxies). As such it describes the basic
behaviour (minimum requirements) that Proxies need to comply with in order to enable
communication across their trust domains in a Federation. Actual trust establishment —
including whether one Proxy chooses to trust another and whether such trust is mutual — is
driven by each Proxy’s local policy, not enforced by this baseline. The basic behaviour
includes processes like client registration (between the Proxies), use of trustmarks, trust
chain evaluation, Trust Authority behaviour, resolving endpoints, etc. The proxied token
introspection [AARC-G052] ties into this basic behaviour too.

Since this document focuses on defining a baseline for establishing trust, it does not define
an operational infrastructure for federations.

1.1 Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD',
'SHOULD NOT', 'RECOMMENDED’, 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in
this document are to be interpreted as described in [REC2119].

Unless otherwise noted, all the protocol parameter names and values are case sensitive.

Unless otherwise noted, all sections are not normative.

1.2 Terminology

This section defines the terminology used by this specification. This section is normative.

This specification uses the terms "access token", "authorization endpoint”, "authorization

grant", "authorization server" ("AS"), "client identifier", "protected resource", "refresh token",
"resource owner", "resource server" ("RS"), and "token endpoint" as defined by OAuth 2.0
[RECE749]; the terms "claim names" and "claim values" as defined by JSON Web Token

(JWT) [REC7519]; the terms "token introspection" and “introspection endpoint” as defined by

https://aarc-community.org/guidelines/aarc-i058/
https://aarc-community.org/guidelines/aarc-g052
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7519

AARC

OAuth 2.0 Token Introspection [REC7662]; the term “relying party” (“RP”) as defined by
OpenID Connect Core [OIDC-Core] (to be synonymous with “client’); the terms "entity",
"entity identifier", "trust anchor", "federation entity", "entity statement", "entity configuration”,
"subordinate statement", "entity type", "entity type identifier", "leaf entity", "subordinate
entity", “intermediate entity”, “immediate superior entity”, "federation entity discovery", "trust
chain", "trust mark", "federation entity keys", “metadata policy” as defined by OpenID

Federation [OID-Fed]; and the terms “infrastructure proxy”, “SP-ldP-Proxy (Proxy)” defined
by the AARC Blueprint Architecture 2019 [AARC-G045].

This specification defines the following terms:

Trust Authority
A Trust Authority is a third party which is trusted to identify entities. In OpenID
Federation, any Trust Anchor, Intermediate Entity or Superior Entity is a Trust
Authority.

Clients

Every OIDC Relying Party (“RP”) is an OAuth 2.0 client, but not every OAuth 2.0 client
is a Relying Party. Their roles and responsibilities differ.

The RP is an OAuth2 client with the primary concern of processing authentication and
identity assertions (claims about the user from an OP). RPs require an id_token to
know who the user is. OAuth2 clients are simpler; their primary concern is
authorisation to access protected resources. They do not require authentication or
identity assertions.

In this document, when referring to “clients” we refer to clients in the context of
client/server connections. Whenever referring to OAuth 2.0 clients specifically, we use
the term “OAuth 2.0 clients”.

1.3 Scope of this document

This document elaborates on the basic requirements for establishing trust between different
proxies in different domains, and on how to address these requirements. We describe the
processes for establishing trust using OpenlD Federation (OID-Fed). Two trust profiles are
defined: a Basic Trust Model (G100.1) and a Fine-Grained Trust Model (G100.2). The
fine-grained model builds upon and requires compliance with the basic model.

Out of scope of this document are all organisational aspects of proxy operation, i.e.
decisions regarding which Trust Anchors are trusted and how public keys are published,
distributed, or revoked. We do assume that appropriate mechanisms for this are in place.

Furthermore, actual policies, which may be the basis for trust decisions, are also out of
scope.

Any entity behind a proxy may be exposed to the federation via the proxy acting as an
intermediate. This is a decision of the proxy operator and not in scope of this document.

https://www.rfc-editor.org/rfc/rfc7662
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-federation-1_0.html
https://aarc-community.org/guidelines/aarc-g045/

AARC

2. Trust Model

In a federated Authentication and Authorisation Infrastructure (AAl) system, each trust
domain — typically representing an administrative, legal or technical boundary — hosts one
or more AARC-compliant AAI services.

AARC-compliant AAIl services typically incorporate an SP-IdP-Proxy component
[AARC-G045], acting as both a Service Provider and an Identity Provider. In the context of
OIDC, these roles correspond to a Relying Party and an OpenlD Provider: the proxy acts as
a Relying Party towards its Identity Providers or upstream AAls, and as an OpenlD Provider
towards its Service Providers. To participate in Research and Education (R&E) identity
federations, these proxies often require a protocol translation layer (e.g. OIDC to SAML2).
The federation model described in this document enables direct participation of OIDC and
OAuth 2.0-based entities in federations, eliminating the need for such a translation, by
establishing trust through a trusted third party known as a Trust Authority. A Trust Authority is
an entity whose primary role is to issue statements about other entities — such as OAuth 2.0
Authorization Servers (AS) and Resource Servers (RS) — that participate in a federation.

The trust model is based on mechanisms from the OpenlD Federation Specification
[OID-Fed] and enables entities that have no direct trust relationship to establish trust by
constructing a Trust Chain (trust path) from the other entity to a trusted third party — a Trust
Anchor.

Figure 2.1 shows a single Trust Authority for simplicity, but the trust evaluation mechanisms
discussed are designed to support more complex federation topologies, e.g. with multiple
Trust Authorities, hierarchical federation structures, or even multiple overlapping federations.

Trust Autharity
R&E AAl Fed
(Domain C)
SP-ldP-Proxy | Nodrectiustrelationship | sp.igP-Proxy
{Domain A) (Domain B)

Figure 2.1 Simple federation model based on the use of a common Trust Authority.

https://aarc-community.org/guidelines/aarc-g045
https://openid.net/specs/openid-federation-1_0.html

AARC

While a Trust Authority is defined as a third party which is trusted to identify entities — by
issuing statements about them — it can take on different roles in a federated environment.
For example, from the point of view of a Proxy:
e an Immediate Superior Entity is a Trust Authority that represents a federation
operator which:
o onboards the Proxy into its federation through an out-of-band registration
process; and,
o is able to issue statements about the Proxy.
A Proxy can have multiple Immediate Superiors, i.e. can be part of multiple
federations.
e a Trust Anchor is a Trust Authority that is inherently trusted by the proxy on the
basis of its keys.
o It does not need to onboard the proxy or trust the proxy, be it directly or
indirectly.
o A Proxy can have multiple Trust Anchors.

A more complex example assumes that proxies can be part of multiple federations (have
multiple Immediate Superiors) and trust multiple Trust Anchors. In addition, trust hierarchies
are possible, where Trust Authorities can register with other Trust Authorities to be part of
their federations.

g Trust .l Trust
Authority 1 e o Authority 2
Trust Trust Trust
Authority 3 Authority 4 Authority 5
5_ e '
i ~
i -r""{
= . egend
’ PFDJ".}"F\ b e e PFDJLYB -—- lrugls "||:.II-"-.||-:'.::
no direct trust relationship —= Can issue statement about
subordingte

Figure 2.2 A more complex trust model with multiple Trust Authorities, hierarchies, and asymmetric
trust.

In the example in Fig. 2.2, the black arrows depict which entities a Trust Authority can issue
statements about. As such, we have:
e Proxy A's Immediate Superiors: Trust Authority 3, Trust Authority 4
e Proxy B's Immediate Superiors: Trust Authority 5
In addition, each proxy has its own Trust Anchors, for example:
e Proxy A's Trust Anchors: Trust Authority 3, Trust Authority 1, Trust Authority 2
e Proxy B's Trust Anchors: Trust Authority 1
In this example, Proxy A and Proxy B:
e don't have a direct trust relationship

AARC

e can establish trust by constructing a trust path from the other entity to one of their
Trust Anchors:
o Proxy A trusts Proxy B because there is a path from Proxy B to Trust
Authority 2
o Proxy B trusts Proxy A because there is a path from Proxy A to Trust
Authority 1

In the real world, a more fine-grained approach to trust might be needed.
e Registering into a federation may be conditioned by compliance with certain
federation policies.
e This set of policies may need to be signalled to other proxies that are not part of the
same federation in a consistent way, so that proxies can additionally decide to trust
other proxies on the basis of these policies.

3. OpenlD Federation

This section describes the building blocks of OpenlD Federation that are relevant for the
trust establishment in the context of this document. This section is not normative.

OpenlID Federation provides a scalable framework for establishing trust relationships without
pre-existing bilateral agreements. Unlike traditional federations based on manual metadata
exchange (e.g. SAML based), OID-Fed allows federation participants to:
e dynamically discover each other's metadata
e dynamically evaluate trust by constructing a verifiable trust chain to a trusted third
party
e assert conformance to federation policies using cryptographically verifiable Trust
Marks

Federations in OID-Fed are modelled as a directed graph of trust relationships, typically
described as a "tree", though it may more often resemble a "mesh" in more inter-connected,
multi-anchor federations.
o Leaf entities represent federation participants (e.g. SP-IdP-Proxies).
e Intermediate entities and Trust Anchors represent federation operators, which
issue signed statements about their members.
e Trust Anchors are trusted third parties whose (public) signing keys are distributed
out-of-band and treated as the basis of trust.

The basis for the OID-Fed trust framework is the Entity Statement, a signed JWT using
asymmetric cryptography.

e Entities publish their metadata as self-signed entity statements called Entity
Configurations, at a well-known URL.

e Trust Anchors and Intermediate entities issue signed entity statements called
Subordinate Statements about their immediate subordinates (containing the
subordinate's public key) as a way to assert that the subordinates are members of
their federation.

AARC

e A set of entity statements can form a path from a leaf entity to a Trust Anchor, called
a Trust Chain. The Trust Chain can be cryptographically verified using the signature
of each statement, with the Trust Anchors's key inherently trusted.

e An entity A can trust an entity B if it can construct a valid trust chain from B to one of
A's Trust Anchors.

e Additionally, subordinate statements can contain so-called Metadata Policies, which
allow Intermediate entities to enforce technical constraints on their subordinates’
metadata. This enables a federated resolution of metadata by aggregating metadata
policies in a trust chain and applying them to a leaf entity's metadata. Note that
metadata policies, as defined by OID-Fed, are different from federation policies,
which are more general guidelines and rules that govern a federation, and the
interaction and operation of entities within a federation.

Even though not in the scope of the OID-Fed spec, the process of registering entities with
their superiors (onboarding in the federation) is a prerequisite for creating the trust fabric.
Each federation operator is responsible for providing such a process to exchange keys and
verify the eligibility of an entity to join their federation, before being able to issue an entity
statement about it. In turn, federation members signal membership by publishing their
immediate superiors in their own entity configuration (via authority_hints).

3.1 OpenlD Connect Client registration

The OID-Fed specification defines two methods that use Trust Chains to establish trust
between an RP and an OP that have no prior explicit configuration or registration between
them: Automatic Registration and Explicit Registration. Both methods can also be used for
OAuth 2.0 profiles other than OpenlD Connect.

For a successful communication, the RP and OP MUST support a common client
registration method. Therefore, federations SHOULD agree on the supported client
registration methods. The table below shows a comparison of the two methods.

Automatic registration Explicit registration

Mechanism | ¢ RP can make authentication | e Dedicated client registration similar
requests to the OP with no prior to OIDC, but RP submits an Entity

registration Configuration or a whole Trust Chain
e RP uses its federation entity id as instead of just metadata

the client ID in all interactions e OP validates trust chains and applies
e OP must dynamically discover and registration policies

validate trust with RP on the fly, then | e Once registration is completed, client

client is automatically accepted id and secret are assigned and
e Must use asymmetric cryptography subsequently regular OpenlD

to authenticate requests since there authentication requests can be done

is no client secret assigned

Pros e No need for prior contact e More control
e Fully dynamic o Allows policy checks and
pre-registration processing

AARC

e Allows the use of existing OIDC
libraries without OID-fed support for
the OIDC communication.

Cons e less initial control, policies | e Requires client-side registration logic
evaluated at runtime (limited scalability).
e Must be able to validate on the fly e Client registration expires; client

must be able to handle (periodical)
re-registration.

Use cases e Large federations with many | e Federations with specific metadata

potential clients requirements
e Dynamic trust for short-lived | e Clients where the OIDC
integrations communication cannot / should not
be changed.

3.2 Trust Marks

OID-Fed also introduces the concept of Trust Marks, which can be used to represent
conformance to federation policies in a scalable and verifiable way. A Trust Mark,
represented as a JWT, is a signed statement of conformance to a well-scoped set of criteria
as determined by an accreditation authority, issued and signed by that accreditation
authority. Trust Marks are published by an entity in their Entity Configuration, and they can
be validated with a trusted accreditation authority, also called Trust Mark Issuer (recognised
Trust Marks and their authorised accreditation authorities within the federation should be
published by the Trust Anchor). The concept of Trust Mark delegation is also supported (via
signed delegation JWTs), for cases where a Trust Mark Owner delegates the issuance of
Trust Marks to (one or multiple) Trust Mark Issuers, for various administrative or technical
reasons.

Trust Marks might be used in several scenarios:

e Local policies at the proxy: during trust evaluation between leaf entities, in addition to
having a valid trust chain, entities might impose additional constraints to establish
trust, e.g. entities must conform to specific policies as represented by Trust Marks.

e Federation onboarding: Trust Authorities might require entities to have specific Trust
Marks in order to be allowed to join a federation; also, Trust Authorities can issue a
membership Trust Mark after registration.

e Entity discovery: Trust Marks can be used to filter entities during discovery
processes.

It is important to distinguish between Trust Chains and Trust Marks: they are orthogonal
concepts that serve different but complementary purposes. Trust Anchors are used to
validate identity, federation membership and metadata integrity, while Trust Marks are used
for policy enforcement and authorization filtering. Essentially, a Trust Anchor specifies who
the entity is and where it fits in the federation (an “inventory”), while the Trust Mark asserts
what the entity complies with (a “filter”).

AARC

4. Establishing trust using OID-Fed in the context
of the AARC BPA

This section maps the building blocks of OID-Fed to address the trust requirements between
Proxies.

Consider the Authorisation Server (AS) and the Client roles. As depicted in Figure 4.1, for an
SP/IdP Proxy A to trust a Proxy B, the client interface of Proxy A (Client_A) needs to trust
the AS interface of Proxy B (AS_B). To replace the current manual approach with OpenID
Federation, several different options exist.

Legend
Trust
Authority B Role
—— an issue statemeant
T “““'ﬁ-h__h about subordinata
- Ha.
- e
P o H“‘mh
i".d- -\-H"i
Proxy A Proxy B
Client_ A AS A Client_B AS B

establish trust

Figure 4.1 Establishing trust between two proxies in a simple trust model with one Trust Authority. The
proxies can have multiple roles (Client, Authorisation Server). For Proxy A to trust Proxy B, Client_A
needs to trust AS_B.

This document defines two different profiles for the trust model that can enable trust between
the two proxies:
1. [G100.1] Basic trust model: this profile defines the minimum set of requirements
needed to establish trust, based only on registration of proxies with superior entities.
2. [G100.2] Fine-grained trust model: this profile adds an additional layer to the basic
trust model for finer grained trust, by using Trust Marks and metadata policies to
explicitly express federation policy requirements.
Compliance with the guideline defined in this document can be expressed as a two-step
process of compliance with these two profiles.

G100.1 Basic Trust Model
This section is normative.

Prerequisites:

10

AARC

Proxies MUST join the trust fabric by registering with Trust Authorities.
Both proxies MUST be able to establish a trust chain for the other party.

Notes:

e In this model, requirements for federation policies are implicit, since they are defined
and considered out-of-band in the onboarding with Trust Authorities. When a Proxy
trusts a Trust Anchor, it implicitly acknowledges all the policies required at the Trust
Anchor.

To establish trust with another Entity (AS_B) the following MUST be done (high level):
1. Client_A uses OID-Fed logic to verify AS_B has a valid Trust Chain (Sec 10 of
OID-Federation Spec Draft 43) to a Trust Anchor trusted by Client_A.

G100.2 Fine-grained trust model

This section is normative.

Prerequisites:
e Basic Trust Model (G100.1).
e To indicate compliance with policies and policy profiles, both parties MUST use Trust
Marks.
o one Trust Mark per federation policy may make sense (i.e. RAF, DPCoCo,
Sirtfi vi/v2, ...)
o one Trust Mark per profile may make just as much sense (e.g. EOSC-AAI, ...).
Such a profile would be similar to a profile in RAF, e.g. RAF Cappuccino.
Both concepts can be used at the same time.
This requires Trust Mark Owners to issue Trust Marks, or to delegate this to
Trust Mark Issuers that issue Trust Marks to the correct entities.
e Proxies MUST be able to apply Metadata Policies coming from upstream Trust
Authorities during the Trust Chain Resolution Process.

To establish trust with another Entity (AS_B) the following MUST be done (high-level):
1. Client_A uses OID-Fed logic to verify AS_B has a valid Trust Chain(Sec 10 of
OID-Federation Spec Draft 43) to a Trust Anchor trusted by Client_A.
2. Client_A uses OID-Fed logic to apply Metadata Policies during the Trust Chain
Resolution process.
3. Client_A verifies that AS_B has a valid Trust Mark for all the Trust Mark Types
Client_A requires.

5. Trust Establishment (technical flow)

This section and all its subsections are normative.

In the following sections, features and processes that pertain only to the fine-grained trust
model are denoted with [G100.2] and compliance with these is not required in the Basic

11

https://openid.net/specs/openid-federation-1_0.html#name-resolving-the-trust-chain-a
https://openid.net/specs/openid-federation-1_0.html#name-resolving-the-trust-chain-a
https://openid.net/specs/openid-federation-1_0.html#name-resolving-the-trust-chain-a
https://openid.net/specs/openid-federation-1_0.html#name-resolving-the-trust-chain-a

AARC

model [G100.1]. Optional features in any of the trust models will additionally be denoted with
“Optional’”.

5.1 Onboarding process

To be able to establish trust, Proxies must already be part of the trust fabric. Proxies become
part of the trust fabric by registering with a Trust Authority. The registration process is Trust
Authority specific, and as such this guideline cannot mandate a specific process.

A typical process is depicted in Figure 5.1 and consists of the following steps:
e |Initiate the onboarding process in some way
e Perform public key exchange between the Proxy and the Trust Authority
e Trust Authority performs eligibility checks, which SHOULD include:
o Proxy has published an Entity Configuration (EC) at its well-known endpoint
o The EC is valid, including:
It is not expired
It is signed with previously exchanged key
m It contains the Trust Authority in authority hints (alternatively, this can
be done once onboarding is complete)
m It satisfies any other requirements the Trust Authority might have
regarding metadata
o [G100.2]: EC contains specific required Trust Marks
m Trust Marks are valid
o Any non-technical checks
The Trust Authority adds the Proxy to its internal database as a subordinate
[G100.2]: Optional: the Trust Authority issues a Trust Mark to the Proxy proving
membership
e [G100.2]: Optional: the Proxy adds the issued Trust Mark to its EC

To verify that the onboarding was successful:
e Go to Trust Authority’s fetch endpoint and get a statement about the Proxy
e Check that the statement is valid, i.e. not expired, contains the Proxy's public key,
signed with the Trust Authority’s key
e [G100.2]: Optional: the Proxy has a valid membership Trust Mark

12

SP-1dP-Proxy Trust Anchor

1. Initiate onboarding process

v

2. Exchange public keys

.y
L al

F 3

3. Perform eligibility checks

<

Eligibility checks examples:
- Valid Entity Configuration (EC)
- EC contains Specific Trust Marks
- Specific requirements on metadata
- Non-technical checks

4. Add Proxy to internal subordinate DB

«

5. Registered Proxy as subordinate

4
opt

5.a. Issue membership TM to Proxy

"
-

6. Add TA to authority_hints

«

opt
6.a Add membership TM to Entity Configuration

«

SP-IdP-Proxy Trust Anchor

AARC

Figure 5.1 A general example for how onboarding could be implemented at a Trust Authority.

5.2 Entity Configuration

Each entity publishes their metadata as a signed statement called Entity Configuration in
accordance to [OID-Fed]. The Entity Configuration MUST contain all the information needed

for the subject entity to participate in the federation:
e The public part of the subject’s signing keys
e The subject’s immediate superiors

e The subject’'s metadata for all the roles the entity has in the federation

13

AARC

e [G100.2] The subject’s Trust Marks

All entities in the federation MUST publish an Entity Configuration, including Trust Anchors,
Intermediates, Trust Mark lIssuers and SP-IdP-Proxies. SP-IdP-Proxies MUST provide
OID-Fed metadata for multiple entity types, to be able to act as OIDC or OAuth 2.0 entities,
such as: openid_provider, openid_relying_party,
oauth_authorization_server, oauth_resource, oauth_client. Among these,
openid_provider and openid_relying_party are mandatory in order to ensure
support for standard authorization code flow, as well as AARC guidelines such as
[AARC-G052] (OAuth 2.0 Proxied Token Introspection). Also, proxies MAY publish metadata
for “federation_entity”.

5.3 Resolving Trust

Figure 5.2 illustrates the general flow for how an SP-IdP-Proxy in Domain A can establish
trust, acting as a Resource Server, with another SP-IdP-Proxy in Domain B acting as an
OAuth 2.0 Authorization Server, both relying on a shared Trust Authority in Domain C.

14

https://aarc-community.org/guidelines/aarc-g056

AARC

OAuth Client RS SP-ldP-Proxy SP-IdP-Proxy TI’RLI&SE gitlh'?ergy
(Domain B) (Domain A) (Domain A) (Domain B) (Domain C)

Mo Cross-domain trust relationship

1: Requests JWT
access token (resource=A)

-
L

User authenticates
using Community AAl

2: Returns JWT
access token (aud=A)

3: Presents JWT
access token

v

4: Introspects JWT
access token
(Client authN=client_secret_*
or private_jwt_key)

g

5: Checks JWT
access token issuer

)

6: SP-IdP-Proxy (Domain A) evaluates
trust of SP-1dP-Proxy (Domain B) - see Fig. 5.3

7: Obtains Introspection endpoint
from SP-IdP-Proxy (Demain B) final Metadata

—

8: Introspects JWT
access token
(Client authN=private_key_jwt)

-
L

9: SP-IdP-Proxy (Domain B) evaluates
trust of SP-IdP-Proxy (Domain A) - see Fig. 5.4

10: Obtains JWKS information
from SP-IdP-Proxy (Domain A) final Metadata

—

11: Introspection Response

1 ...
12: Introspection Response
‘...
13: Protected resource
S
. Trust Authority
OAuth Client RS SP-ldP-Proxy SP-ldP-Proxy
(Domain B) (Domain &) (Domain A) (Domain B) e GHIRED

(Domain C)

Figure 5.2 General flow for establishing trust between Proxy A acting as a Resource Server and Proxy
B acting as an Authorisation Server. The flow assumes that automatic client registration is used. The
diagram depicts the simple federation model with a single common Trust Authority.

In steps 6 and 9 in Figure 5.2, each SP-IdP-Proxy retrieves the Entity Configuration from the
peer entity and builds a Trust Chain that consists of multiple signed statements, starting with
a statement issued and signed by the leaf entity about itself, ending with a statement issued
by a Trust Anchor about itself, and all the intermediate statements being issued by a superior

15

AARC

entity about its subordinate. Each superior signs the public key of its subordinate, which
enables a top-down verification of the entire chain. The resulting trust chain is valid if:

e |t terminates at a recognised Trust Anchor.

e All intermediate statements are validly signed and unexpired.

[G100.2] To resolve trust in the fine-grained model, additional steps are required:

e As part of the Trust Chain resolution, Metadata Policies defined by each Trust
Authority in the chain are applied to the subject’'s metadata, ensuring that technical
policies are always respected.

e Required Trust Marks MUST be present and valid.

The following sequence diagram represents the interactions between the SP-IdP-Proxy
(Domain A), the SP-IdP-Proxy (Domain B), and the Trust Authority (also a Trust Anchor in
this case) during a trust evaluation made by the SP-IdP-Proxy (Domain A) for the
SP-IdP-Proxy (Domain B) — Step 6 in Figure 5.2:

16

AARC

Trust Authority
SP-1dP-Prox SP-1dP-Prox
(Domain A)y (Domain B)y ngrﬁsiln':gf
No Cross-domain trust relationship
6a: Fetch Entity Configuration Request
(sub=SP-IdP-Proxy B, iss=SP-ldP-Proxy B)
6b: Fetch Entity Configuration Response
(sub=SP-IdP-Proxy B, iss=SP-ldP-Proxy B, authority_hints=[R&E AAIl Fed])
‘ ...
6c: Evaluates authority_hints
6d: Fetch Entity Configuration Request
(sub=R&E AAl Fed, iss=R&E AAl Fed)
6e: Fetch Entity Configuration Response
(sub=R&E AAI Fed, iss=R&E AAIl Fed, authority_hints is absent)
4 ..
6f: Obtains Fetch endpoint
-y
6g: Fetch Entity Statement Request
(sub=SP-ldP-Proxy B, iss=R&E AAI Fed)
6h: Fetch Entity Statement Response
(sub=SP-IdP-Proxy B, iss=R&E AAl Fed, metadata, trust_marks)
4 ..
6i: Evaluates Trust Chain
6j: [G100.2] Applies Metadata Policies
6k: [G100.2] Derives the SP-IdP-Proxy's final Metadata
6l: [G100.2] Checks required Trust Marks
SP-1dP-Prox SP-1dP-Prox Trust Authority
(Domain A)Y (Domain E))r ngnﬁgiln':gf

Figure 5.3 SP-IdP-Proxy (Domain A) evaluates trust of SP-IdP-Proxy (Domain B). The diagram
depicts a simple federation model with a single Trust Authority. In a more complex federation with a
hierarchy of Trust Authorities, steps 6¢—6h are repeated until a Proxy A’s Trust Anchor is reached, or
until the Trust Authority does not contain any authority hints. Multiple Trust Chains may be found,

each Proxy may decide how to choose between multiple valid chains.

17

AARC

The following sequence diagram represents the interactions between the SP-IdP-Proxy
(Domain A), the SP-IdP-Proxy (Domain B), and the Trust Authority during a trust evaluation
made by the SP-IdP-Proxy (Domain B) for the SP-IdP-Proxy (Domain A) — Step 9 in Figure
5.2

18

AARC

Trust Authority
REE AAl Fed
(Domain C)

SP-1dP-Proxy SP-1dP-Proxy
{Domain A) {Domain B)

Mo Cross-domain trust relationship

9a: Fetch Entity Configuration Request
(sub=SP-1dP-Proxy A, iss=SP-1dP-Proxy A)

9b: Fetch Entity Configuration Response
(sub=5SP-IdP-Proxy A, iss=SP-1dP-Proxy A, authority_hints=[R&E AAI Fed])

9c: Evaluates authority_hints

L TR

9d: Fetch Entity Configuration Reguest
(sub=R&E AAl Fed, iss=R&E AAIl Fed)
9e: Fetch Entity Configuration Response
(sub=R&E AAIl Fed, iss=R&E AAIl Fed, authority_hints is absent)

9f: Obtains R&E AAl Fed's Fetch endpoint

9g: Fetch Entity Statement Request
(sub=SP-1dP-Proxy A, iss=R&E AAl Fed)

9h: Fetch Entity Statement Response
(sub=SP-IdP-Proxy A, iss=R&E AAIl Fed, metadata, metadata_policies, trust_marks)

9i: Evaluates Trust Chain

U

9j: [G100.2] Applies Metadata Policies

U

9k: [G100.2] Derives the Client's final Metadata

U

91: [3100.2] Checks required Trust Marks

U

SP-1dP-Proxy SP-IdP-Proxy Trust Authority

; REE AAl Fed
(Domain A) (Domain B) (Domain C)

Figure 5.4
SP-IdP-Proxy
(Domain B) evaluates
trust of SP-IdP-Proxy
(Domain A). The
diagram depicts a
simple federation
model with a single
Trust Authority. In a
more complex
federation with a
hierarchy of Trust
Authorities, steps
9¢c-9h are repeated
until a Proxy B’s Trust
Anchor is reached, or
until the Trust
Authority does not
contain any
authority_hints.
Multiple Trust Chains
may be found, each
Proxy may decide
how to choose
between multiple
valid chains.

19

5.4 Client registration

AARC

For compliance with G100.1 and G100.2: both client registration methods MUST be
supported for the OP role, one is REQUIRED for the RP role depending on the federation

policies.
SP-IdP-Proxy A SP-IdP-Proxy B
(as RP) (as OP)
SP-1dP-Proxy A (RP) evaluates
trust of SP-IdP-Proxy B (OP) - see Figure 5.3
Send request with RP's entity ID as client ID
SP-1dP-Proxy B (OP) evaluates
trust of SP-IdP-Proxy A (RP) - see Figure 5.4
alt [if successful]
return successful OIDC authentication response
[if validation fails]
return error response
SP-IdP-Proxy A SP-IdP-Proxy B
(as RP) (as OP)

Automatic client registration flow:
Fig 5.5 Automatic client registration

Explicit client registration flow:

Trust Authority
R&E AAIl Fed

Trust Authority
R&E AAI Fed

20

AARC

Trust Authority
SP-1dP-Proxy A SP-IdP-Proxy B
as RP (as OP R&E AAI Fed

SP-1dP-Proxy A (RP) evaluates
trust of SP-IdP-Proxy B (OP) - see Fig. 5.3

Construct own Entity Configuration

S

select authority_hints set and metadata s.t.
they lead to common TA with OP and valid metadata

Send registration request
containing Entity Configuration or entire Trust Chain

»
>

Validate request and audience

SP-IdP-Proxy B (OP) evaluates
trust of SP-IdP-Proxy A (RP) - see Fig. 5.4

alt [if successful]

provision OIDC client for RP
with client_id, client_secret, and expiration

D)
opt

modify client metadata

«

return successful registration response
include registered metadata and used TA & authority_hints

[if validation fails or client already registered]

return error response

F 3

Trust Authority
SP-1dP-Proxy A SP-IdP-Proxy B
(as Rp) (as Op) RRE AAIl Fed

Fig 5.6 Explicit client registration

6. Federation Policies

In a federated AAI environment, federation policies define the expected operational, security,
and organisational behaviors that participating entities must follow. These policies enable
trust interoperability across distinct trust domains, particularly when entities do not have prior
bilateral agreements.

21

AARC

[OID-Fed] provides several mechanisms of expressing and enforcing federation policies.
[G100.2] makes use of these mechanisms to enable a more fine-grained control over trust
requirements:

Trust Marks can be used to represent conformance to federation policies in a
scalable and verifiable way.

In addition to a Trust Mark, some federation policies might require signalling
compliance as part of the transaction, via standard OIDC mechanisms, such as
claims or scopes. This is the case for the REFEDS Assurance Framework, which
already includes a provision on how to use the specification with OIDC. Still, its
presence as a trustmark allows other entities to discover support prior to the
transaction and filter based on the support for RAF. The table in Appendix A.1
contains a non-exhaustive list of examples of federation policies that can be
expressed as Trust Marks.

Metadata Policies can be used to enforce requirements on the metadata of leaf
entities, such as limiting supported scopes or claims, or requiring specific claims.
Trust Authorities may use metadata policies to require Proxies to comply with specific
guidelines. For example, to ensure that Proxies can release the required attributes in
[AARC-G056], the metadata policy will require all OPs to support at least the
following scopes via the metadata policy operator “superset_of: email,
profile, entitlements®.

An Example Subordinate Statement issued by a [G100.2] trust authority about a
proxy including metadata policies is shown in Appendix A.2.

It is also noted that federation policies still can be expressed and checked outside of
OID-Fed. e.g. at the time of enrollment.

7. Implementation Considerations

7.1 Configuration

7.1.1 Trust Authority

The Trust Authority has the following requirements:

MUST define an onboarding process for subordinates as defined in [Section 5.1]
o SHOULD allow onboarding of entities with only a subset of the published
entity types.
MUST provide the Fetch endpoint for subordinate statements as defined in [OID-Fed]
MUST provide the List endpoint as defined in [OID-Fed]
[G100.2] MUST list accepted trust mark issuers
[G100.2] MAY act as a Trust Mark issuer for the supported federation policies
MAY provide a Resolve endpoint as defined in [OID-Fed]

An example Entity Configuration for a [G100.2] trust authority is shown in Appendix B.1.

22

https://openid.net/specs/openid-federation-1_0.html
https://docs.google.com/document/d/1jO1X7GSXWf_R604j5LXinr37ZUf96YVdIXSvjpS_Vyk/edit?tab=t.0#heading=h.expf72uyed0
https://openid.net/specs/openid-federation-1_0.html
https://openid.net/specs/openid-federation-1_0.html
https://openid.net/specs/openid-federation-1_0.html

AARC

7.1.2 Trust Mark Issuer

The Trust Mark Issuer has the following requirements:
e MUST implement the Trust Mark endpoint
e MAY implement the Trust Mark Status endpoint
e MAY implement the Trust Marked Entities Listing endpoint

An example Entity Configuration for a trust mark issuer is shown in Appendix B.2.

7.1.3 SP-1dP-Proxy

An SP-IdP-Proxy participating in a federation has the following requirements:
Entity Configuration Publication

e The SP-IdP-Proxy MUST expose an Entity Configuration at the well-known endpoint:
/ .well-known/openid-federation as defined in [OID-Fed].

e The Entity Configuration MUST include:

The Proxy’s public signing keys.

The list of immediate superiors (authority_hints).

Metadata for all supported roles (see Supported Federation Roles below).

[G100.2] Any applicable Trust Marks.

o O O O

Supported Federation Roles

e The SP-IdP-Proxy MUST publish metadata for at least the following roles:

o openid_provider when acting as a Community AAIl as per [AARC-G045]
or Collaboration Management as per [AARC-G080]

o openid_relying_party when acting as an Infrastructure Proxy per
[AARC-G045] or Infrastructure Integration per [AARC-G080]

e The SP-IdP-Proxy MAY additionally publish metadata for:

o oauth_authorization_server (see [AARC-G052] for additional
requirements on OAuth metadata when supporting proxied token
introspection)

o oauth_resource (see [AARC-G052] for additional requirements on OAuth
metadata when supporting proxied token introspection)
oauth_client
federation_entity when publishing generic metadata, such as
informational metadata as defined in [OID-Fed] (§5.2.2)

An example Entity Configuration for a Proxy in the OP and RP role is shown in Appendix
B.3.

Trust Chain Resolution

e The SP-IdP-Proxy MUST validate peer entities as defined in [OID-Fed].

23

https://openid.net/specs/openid-federation-1_0.html
https://aarc-community.org/guidelines/aarc-g045/
https://aarc-community.org/guidelines/aarc-g080/
https://aarc-community.org/guidelines/aarc-g045/
https://aarc-community.org/guidelines/aarc-g080/
https://aarc-community.org/guidelines/aarc-g052/
https://aarc-community.org/guidelines/aarc-g052/
https://openid.net/specs/openid-federation-1_0.html
https://openid.net/specs/openid-federation-1_0.html

AARC

o The SP-IdP-Proxy MAY use an external resolver service to offload trust chain
construction and validation.
o Otherwise, the SP-IdP-Proxy MUST construct and verify the Trust Chains
itself. Validation MUST include:
m Digital signature checks.
m Expiration, subject and issuer checks.
m [G100.2] Application of metadata policies.
m [G100.2] Verification of required Trust Marks.
e The SP-IdP-Proxy SHOULD maintain local caching of resolved trust chains to
improve performance and availability.

Client Registration

e |In the OpenlD Provider (OP) role, the SP-IdP-Proxy MUST implement both
Automatic Registration and Explicit Registration as defined in [OID-Fed] (§12.1 and
§12.2).

o The OP MUST implement the Federation Registration endpoint as defined in
[OID-Fed] (§5.1.3 and §12.2)

e In the Authorization Server (AS) role, the SP-IdP-Proxy MUST implement both
Automatic Registration and Explicit Registration as defined in [OID-Fed] (§12.1 and
§12.2).

o The AS MUST implement the Federation Registration endpoint as defined in
[OID-Fed] (§5.1.3 and §12.2)

e In the Relying Party (RP) / Client / Resource role, the SP-IdP-Proxy MUST
implement at least one client registration mechanism.

o The SP-IdP-Proxy SHOULD support both registration mechanisms to
maximise interoperability.
o A federation policy MAY require a certain client registration mechanism.

Trust Mark Handling [G100.2]

e The SP-IdP-Proxy MUST have the ability to validate received Trust Marks as
described in [OID-Fed] (§7) during the trust resolution (see Section 5.3)

e The SP-IdP-Proxy MUST validate all Trust Marks that are required by federation or
local policies
The SP-IdP-Proxy MUST publish valid Trust Marks in its Entity Configuration
The SP-IdP-Proxy MUST ensure that published Trust Marks with an expiration are
refreshed and updated before they expire.

7.2 Federation Topologies

OpenlID Federation enables a variety of federation topologies beyond the simple single Trust
Authority model. Depending on deployment needs, different topologies can be combined:

e Peer-to-peer interactions: Direct trust establishment between proxies across
administrative domains (e.g. for cross-domain resource access via proxied token

24

https://openid.net/specs/openid-federation-1_0.html
https://openid.net/specs/openid-federation-1_0.html
https://openid.net/specs/openid-federation-1_0.html

AARC

introspection [AARC-G052]). Trust chains are constructed to a common Trust Anchor
without requiring bilateral agreements.

e Hierarchical federation structures: One or more intermediate entities act on behalf
of a Trust Authority, delegating trust to proxies. This topology reflects national or
thematic federation operators onboarding participants under a higher-level
inter-federation Trust Anchor.

e Multiple overlapping federations: A proxy may participate in more than one trust
chain simultaneously (e.g. national, community, and cross-infrastructure federation
contexts). This supports scenarios where policy requirements differ across
federations, and trust decisions must consider multiple paths.

7.3 Performance considerations

Federation participants SHOULD consider performance aspects when implementing OpenlD
Federation trust resolution and client registration.

The OpenlD Federation specification does not define explicit performance requirements.
However, two provisions have implications for efficiency: the Resolve endpoint ([OID-Fed],
Section 10.6]) and the requirement to refresh Trust Chains upon expiration ([OID-Fed],
Section 11]). The Resolve endpoint allows entities to offload trust chain discovery and
validation to an external resolver, which can reduce repeated computation. The refresh
requirement implies the need for caching strategies, since expired Trust Chains MUST be
revalidated and renewed in a timely manner.

For trust resolution, proxies acting as RPs or OPs SHOULD cache validated Trust Chains
and resolved metadata until the expiration time indicated in the corresponding Entity
Statements, and MAY proactively refresh chains before they expire. Where multiple valid
Trust Chains exist, entities SHOULD avoid redundant processing by persisting the selected
chain or prioritising Trust Anchors. For G100.2 compliance, Metadata Policies MUST be
applied during Trust Chain resolution; the aggregated metadata result SHOULD be cached
to avoid repeated evaluation overhead. Large-scale deployments SHOULD consider
hierarchical federation structures or delegated resolvers to distribute load.

For client registration, performance depends on the chosen method. Automatic registration
requires the OP to validate Trust Chains on-the-fly for every authentication request; without
effective caching, this introduces latency. Explicit registration involves more up-front
processing but allows reuse of the established client record, reducing runtime overhead.
Since client registrations expire, implementations SHOULD support efficient re-registration
mechanisms, and OPs SHOULD optimise registration endpoints for scale. RPs MUST
support reusing cached registration responses until renewal is required.

Note that, apart from Sections 10.6 and 11, the [OID-Fed] specification does not mandate

specific performance behaviour. The considerations in this section are therefore
implementation guidance for AARC-compliant deployments.

25

https://aarc-community.org/guidelines/aarc-g052/
https://openid.net/specs/openid-federation-1_0.html
https://openid.net/specs/openid-federation-1_0.html
https://openid.net/specs/openid-federation-1_0.html

AARC

8. Security Considerations

The security considerations of [OID-Fed] (section 18) apply.

References

AARC-G045] AARC Community members;Appint members;Nicolas Liampotis (ed.),
“AARC Blueprint Architecture 2019”, DOI: 10.5281/zenodo.3672784,
November 2019,
<https://aarc-community.org/guidelines/aarc-g045/>.

[AARC-G052] AARC Community members; Appint members: “OAuth 2.0 Proxied
Token Introspection”, DOI: 10.5281/zenodo.15334672, November
2023,

<https://aarc-community.org/quidelines/aarc-g052/>
[AARC-G056] AARC Profile for Expressing Identity Attributes, Unpublished

<https://aarc-community.org/quidelines/aarc-g056>.
[AARC-1058] Methods for Establishing Trust between OAuth 2.0 Proxies in Different

Trust Domains. <htips://aarc-community.org/quidelines/aarc-i058>

[AARC-G080] AARC Blueprint Architecture 2025 - Initial Revision
<https://aarc-community.org/quidelines/aarc-g080>

[OIDC-Core] OpenID Connect Core 1.0
<https://openid.net/specs/openid-connect-core-1_0.html>

[OID-Fed] Hedberg, R., Ed., Jones, M.B., Solberg, AA., Bradley, J., De Marco,
G., and Dzhuvinov, V., "OpenlID Federation 1.0", Draft 37,

August 2024,
<https://openid.net/specs/openid-federation-1_0.html>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012,
<http://www.rfc-editor.org/info/rfc6749>.

[RFC7519] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Token (JWT)",
RFC 7519, DOI 10.17487/RFC7519, May 2015,
<https://www.rfc-editor.org/rfc/rfc7519>.

[RFC7662] Richer, J., “OAuth 2.0 Token Introspection”, RFC 7662,

DOI 10.17487/RFC7662, October 2015,
<https://www.rfc-editor.org/rfc/rfc7662>.

26

https://openid.net/specs/openid-federation-1_0.html
https://aarc-community.org/guidelines/aarc-g045/
https://aarc-community.org/guidelines/aarc-g052/
https://aarc-community.org/guidelines/aarc-g056
https://aarc-community.org/guidelines/aarc-i058
https://aarc-community.org/guidelines/aarc-g080
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-federation-1_0.html
https://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7662

AARC

Appendix A - Federation Policies

A.1 Examples of Trust Marks

Federation Trust Mark Type Trust Mark | Trust Mark

Policy Owner Issuer

Sirtfi vl & v2 | https://refeds.org/sirtfi REFEDS / | National Identity
https://refeds.org/sirtfi2 Sirtfi Federation

REFEDS DP | https://refeds.org/category/code-of-condu | REFEDS self-issued
CoCo v2 ctiv2

Security https://aarc-community.org/guidelines/aar | AEGIS self-issued
Operational | c-g084/

Baseline

WISE https://wise-community.org/wise-baseline | WISE self-issued
Baseline AUP | -aup/v1/ SCI-WG

REFEDS https://refeds.org/assurance REFEDS self-issued
Assurance

Framework v2

Sncfi https://aarc-community.org/snctfi AARC self-issued

A.2 Example of a (decoded) Subordinate Statement Including
Metadata Policies

{
"exp": 1757495867,
"jat": 1757409467,
"jss": "https://ta.gl00.2.example.com",
"sub": "https://proxy.ri.example.org",

HjWkSH: {
"keyS": [
{
"kid": "abc123",
Ilktyll: IlRSAIl’
Teilels MGG,
llusell: lls-igll,
IlnII: Il....ll’
Ile": IIAQABH

27

AARC

]
I
"metadata_policy": {
"federation_entity": {
"contacts": {
"essential": true
b
"display_name": {
"essential": true
b
"organization_name": {
"essential": true
s
"policy_uri": {
"essential": true
}
I
"openid_provider": {
"client_registration_types_supported": {
"essential": true,
"superset_of": [
"automatic"
]
b
"id_token_signing_alg_values_supported": {
"subset_of": [

"RS256",
"ES256",
"ES512"
]
b
"scope": {

"essential": true,
"superset_of": [
"openid",
"profile",
"email"
]
b
"subject_type_supported": {
"essential": true,
"superset_of": [
"public"
]
s
"userinfo_signing_alg_values_supported": {
"subset_of": [
"RS256",
"ES256",
"ES512"

28

AARC

b

Appendix B - Example Entity Configurations
(decoded)

B.1 Trust Authority

{
"exp": 1757495867,
"jat": 1757409467,
"iss": "https://ta.gl00.2.example.com",
"jWkS": {
"keys": [
{
"alg": "ES256",
llcrvll: llP_256ll,
"kid": "xFYuOlyKBlMghUMke-x-fvKml17Pub3LowiWe-szNsa8",
"kty": "EC",
"use": "sig",
"x": "SgpIPSH6N7RcY4ZWco8_i5XMeoGh8LrWoTmx fASEfFM" ,
"y": "rPiFQrTLPfalLklzG4zxUgVm-ZptAZEYBp6Rfoc2H6RC"
}
]
b

"metadata": {
"federation_entity": {
"display_name": "AARC G100.2 Example TA",
"federation_fetch_endpoint": "https://ta.gl00.2.example.com/fetch",
"federation_list_endpoint": "https://ta.gl00.2.example.com/list",
"federation_resolve_endpoint":
"https://ta.gl00.2.example.com/resolve",
"organization_name": "Example Organization"
}
I
"sub": "https://ta.gl00.2.example.com",
"trust_mark_issuers'": {
"https://refeds.org/sirtfi": [
"https://tmi.example.com"
1,
"https://refeds.org/sirtfi2": [
"https://tmi.example.com"
]
}

29

30

AARC

B.2 Trust Mark Issuer

{
"authority_hints": [
"https://ta.gl00.2.example.com"
1,
"exp": 1757574701,
"jat": 1757488301,

"iss": "https://tmi.example.com",
"jwks": {
"keys": [
{

"alg": "ES256",

"crv": "P-256",

"kid": "njbnIq34F9BLD2jAGNZV4J0-IPwFu7dEqOCAEMO5q00",
HktyH: HECH,

nusen: ”Sig”,

"x": "dx4wzrVuWN9GpSKhIzz1kXq5YzFfFTL5syp3Y4IR9CU",
"y": "rGVM5yYgg8PnSXauuX1VACXzOWDDXxOOKIBHf4m7BOs"

]
I
"metadata": {
"federation_entity": {
"display_name": "Trust Mark Issuer",
"federation_trust_mark_endpoint":
"https://tmi.example.com/trustmark",
"federation_trust_mark_list_endpoint":
"https://tmi.example.com/trustmark/list",
"federation_trust_mark_status_endpoint":
"https://tmi.example.com/trustmark/status",
"organization_name": "Example Organization"
}
I

"sub": "https://tmi.example.com"

B.3 Proxy with OP and RP roles
{

"iss": "https://proxy.ri.example.org",
"sub": "https://proxy.ri.example.org",
"jat": 1756375124,
"exp": 1756461524,
"jWkS"I {
"keys": [
{

"kid": "abc123",

Hktyﬂ: HRSAH’

"alg": "RS256",

31

AARC

Ilusell: Ils-igll’
llnll: ll....ll’
Ilell: IIAQABII

]
I
"metadata": {
"openid_provider": {
"issuer": "https://proxy.ri.example.org",
"authorization_endpoint": "https://proxy.ri.example.org/oidc/auth",
"token_endpoint": "https://proxy.ri.example.org/oidc/token",
"userinfo_endpoint": "https://proxy.ri.example.org/oidc/userinfo",
"jwks_uri": "https://proxy.ri.example.org/oidc/jwks",

"response_types_supported": [

"code",
"id_token",
"code id_token"

1,
"subject_types_supported": ["public", "pairwise"],
"id_token_signing_alg_values_supported": ["RS256"],

"scopes_supported": [
"openid",
"profile",
"email",
"offline_access",
"entitlements",
"voperson_external_affiliation",
"schac_home_organization"

1,

"claims_supported": [
"sub",
"name",
"given_name",
"family_name",
"preferred_username",
"email",
"email_verified",
"acr",
"eduperson_assurance",
"entitlements",
"voperson_id",
"voperson_external_affiliation",
"schac_home_organization"

1,
"client_registration_types_supported": [

"automatic",
"explicit"

32

15

AARC

"federation_registration_endpoint":

"https://proxy.ri.example.org/openid-federatio/register"
b
"openid_relying_party": {
"application_type": "web",
"redirect_uris": [
"https://proxy.ri.example.org/callback",
"https://proxy.ri.example.org/callback2"

1,
"client_name": "Example RI",
"client_uri": "https://proxy.ri.example.org",

"jwks_uri": "https://proxy.ri.example.org/oidc/jwks",
"response_types": ["code"],
"grant_types": [

"authorization_code",

"refresh_token"

1,
"token_endpoint_auth_method": "client_secret_post",
"id_token_signed_response_alg": "RS256",
"scope": "openid profile email entitlements",
"client_registration_types": [

"explicit"
1,

"tos_uri": "https://proxy.ri.example.org/aup"
1,
"federation_entity": {

"contacts": ["aai-support@ri.example.org"],

"organization_name": "Example RI",
"logo_uri": "https://proxy.ri.example.org/assets/logo
"policy_uri": "https://proxy.ri.example.org/privacy"

}

I

"authority_hints": [
"https://interml.example.org",
"https://tal.example.net"

.png",

33

AARC

Appendix C. Summary of required Features

Participant

Entity Configuration Client Registration Trust Marks Metadata Policies Endpoints Other
Role/Feature
Trust Authority [MUST publish|[N/A [G100.2] MUST([G100.2] MAY enforce| e [REQ] Subordinate Listing |[MUST define
federation_entity list accepted|via subordinate| e [REQ] Fetch an onboarding
issuers statements e [OPT] Resolve process
Trust Mark Issuer [MUST publish[N/A MUST issue Trust|N/A o [REQ] Trust Mark
federation_entity Marks; MAY e [OPT] Trust Mark Status
publish status e [OPT] Trust Marked
Entities Listing
Proxy (OP role) |[MUST publish[MUST support Automatic and|[G100.2] MUST([G100.2] MUST apply| e [REQ] Federation
openid_provider Explicit [§5.4] validate Trust|during trust chain Registration
Marks resolution
Proxy (RP role) |[MUST publish|MUST implement at least one|[G100.2] MUST|[G100.2] MUST apply
openid_relying_party |method required by federation|validate Trust{during trust chain
policy (SHOULD support|Marks resolution
both)
Proxy (AS role) |MUSTMAY publish[MUST support Automatic and|[G100.2] MUST([G100.2] MUST apply
oauth_authorization_ |Explicit [§5.4]N/A validate Trust{during trust chain
server Marks resolution
Proxy (Client /|[MUSTMAY publish[MUST implement at least one|N/A N/A
Resource) oauth_client, method (SHOULD support

oauth_resource

both)N/A

Table 8.x: Features by Participant Role

34

	Guidelines for Establishing Trust between AARC-compliant AAI services using OpenID Federation (AARC-G100)
	
	1 Introduction
	1.1 Notational Conventions
	1.2 Terminology
	1.3 Scope of this document

	2. Trust Model
	3. OpenID Federation
	3.1 OpenID Connect Client registration
	3.2 Trust Marks

	4. Establishing trust using OID-Fed in the context of the AARC BPA
	G100.1 Basic Trust Model
	G100.2 Fine-grained trust model

	5. Trust Establishment (technical flow)
	5.1 Onboarding process
	5.2 Entity Configuration
	5.3 Resolving Trust
	5.4 Client registration

	6. Federation Policies
	7. Implementation Considerations
	7.1 Configuration
	7.1.1 Trust Authority
	7.1.2 Trust Mark Issuer
	7.1.3 SP-IdP-Proxy

	7.2 Federation Topologies
	7.3 Performance considerations

	8. Security Considerations
	References
	Appendix A - Federation Policies
	A.1 Examples of Trust Marks
	A.2 Example of a (decoded) Subordinate Statement Including Metadata Policies

	Appendix B - Example Entity Configurations (decoded)
	B.1 Trust Authority
	
	B.2 Trust Mark Issuer
	B.3 Proxy with OP and RP roles

	Appendix C. Summary of required Features
	

