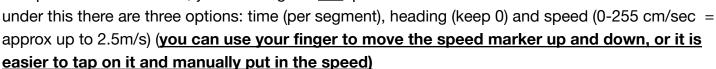
SPHEROS TO THE RESCUE


Objectives: With your group of 3 people, program your Sphero to allow you to examine the following situations.

Questions to Think About:

- How do you calculate the velocity of a moving object? (What information do you need? How are you going to get it?)
- How do you calculate the acceleration of a moving object? (What information do you need? How are you going to get it?)
- What should the motion map of objects undergoing different types of motion look like?
- What should the D/T graphs of objects undergoing different types of motion look like?
- What should the V/T graphs of objects undergoing different types of motion look like?

PRE LAB: Getting to know your sphero


- 1. You will bring your ipad to the teacher to be paired with a sphero.
- 2. Open the sphero EDU app and connect
- 3. On the bottom you will see a box labeled programs, open this, tap create and give a title-Eglite group __ (one members last name)
- 4. Tap the movement icon, you will drag the roll up

***this is a great tutorial to also get you started https://drive.google.com/file/d/0B8I5sVYmaiiiUjAtWkdvVEZyTDA/view?usp=sharing

A few tips to make things easier!

- → use the roll function to bring the sphero to a stop, NOT the stop button. This seems to give better data (ex: bring to 0 cm in 5 sec)
- → use the backwards to turn the sphero around.
- → aim the blue light on the sphero so that it is pointing to the starting point/you before you begin and that will help keep it straight
- → DON'T use the drive function to move the sphero
- → If you lose connection- you are probably too close to other spheros--give some space so the signals aren't getting mixed up!

- 5. now take about 5-10 minutes to play around with your new friend to make sure you are able to get him/her to behave the way you would like before you begin Part 1
- 6. Jot down any notes/reminders as you are experimenting with the Sphero

Part One - Constant Velocity

Part 1: How Fast Does Sphero Move?

Objectives

- Using the Sphero EDU App, students will program Sphero to move at specific speeds over a fixed distance.
- Students will record distance and time data and then calculate Sphero's actual speed.
- Students will be able to translate Sphero's speeds into meters/second.

Procedure - Speed Setting 50 (out of 255):

- 1. Mark out 0, 1, and 2 meter on the floor using a meter stick and masking tape.
- 2. Create a program that will move Sphero at a constant speed of 50 for at least 2 meters. This is important because Sphero must be moving at full speed <u>before</u> it reaches the starting mark of the timing zone.
- 3. Test out your program to make sure that;
 - a. Sphero reaches full speed before reaching the starting mark.
 - b. You have aimed Sphero correctly to go straight through the timing zone.
- 4. Run your program and record the amount of time it takes Sphero to move from the 1 meter to 2 meter marks using the stopwatch function on a smartphone or tablet. Record the data in Figure 1. **Do not round the data.**
- 5. Repeat step 4 at least two more times. (Re-do any trial that results in an outlier).
- 6. Calculate the average of all trials and record that value in Figure 1 [Average Speed at 50]. Procedure Speed Setting 100 (out of 255):
 - 7. <u>Prediction:</u> Based on the speed calculated for 50, predict Sphero's speed in meters/second at 100 ______. Record your prediction in Figure 1 [Prediction at Speed Setting 100].
 - 8. Repeat Steps 2-5, but change Sphero's speed to 100.
- 9. Calculate the average of all trials and record that value in Figure 1 [Average Speed at 100]. Procedure Speed Setting 150 (out of 255):
 - 10. <u>Prediction:</u> Based on the speeds calculated for 50 and 100, predict Sphero's speed in meters/second at 150 ______. Record your prediction in Figure 1 [Prediction at Speed Setting 150].
 - 11. Repeat Steps 2-5, but change Sphero's speed to 150.
 - 12. Calculate the average of all trials and record that value in Figure 1 [Average Speed at 150].

Figure 1: Time Trials and Average Speeds

	Prediction (m/s)	Time Trial 1 (s)	Time Trial 2 (s)	Time Trial 3 (s)	Average Time	Average Speed (m/s) (d=1 m)
Speed Setting 50	X					
Speed Setting 100						
Speed Setting 150						

	্রাভাভ: How accurate was your prediction of Sphero's speed at 100? different? More than 0.2 m/s?).	(Almost exact?	Less than 0.2 m/s
2.	How accurate was your prediction of Sphero's speed at 150? different? More than 0.2 m/s?).	(Almost exact?	Less than 0.2 m/s
3.	Based on your data, predict Sphero's speed in meter/second reasoning and show your work!	at speed setting	255. Explain your

	ge Speed Comparis	son		_
	Average Speed (m/s)	Average Speed (m/s)	Average Speed (m/s)	
	(Your Group)	Station	Station	
Speed Setting 50				
Speed Setting 100				
Speed Setting 150				
	peeds your group cald se? Explain any differ		-	e other groups? Are they
experime		how that error could	=	. Identify a source of esults. Make sure to use
 Spheros experime 	ntal error and explain	how that error could	=	
 Spheros experime 	ntal error and explain	how that error could	=	
 Spheros experime 	ntal error and explain	how that error could	=	. Identify a source of esults. Make sure to use
 Spheros experime 	ntal error and explain	how that error could	=	
 Spheros experime 	ntal error and explain	how that error could	=	

Part Two - Acceleration (Speeding Up)

Question: How does the speed of an object affect its velocity, acceleration and force?

Materials: Sphero, trundle wheel or meter stick, stopwatch/timer, iPad, Sphero cover, Graph Paper

Procedure:

1. Using the trundle wheel measuring tape, measure and mark off ten meters on the floor.

- 2. Open the Sphero EDU APP and set Sphero to 25% speed (63.75 in Speed settings). (remember you can tap on the number to manually change the speed settings)
- 3. Drive the sphero with no cover recording the time at 6 meters.
- 4. Repeat the test 2 more times and calculate the average time.
- 5. Next, set Sphero to 50% speed (127.50 in Speed settings).
- 6. Repeat it two more times and calculate the average time.
- 7. Next, set Sphero to 75% speed (191.25 in Speed settings).
- 8. Repeat it two more times and calculate the average time.
- 9. Next, set Sphero to 100% speed (255 in Speed settings).
- 10. Repeat it two more times and calculate the average time.
- 11. Using the data collected from the experiment, calculate Final Velocity, Acceleration and Force
- 12. Answer question: How does the speed of an object affect its velocity, acceleration and force

Set Sphero speed to 25%	Time (s)	<u>Distance</u> (<u>m)</u>	Final <u>Velocity</u> (v=d/t)	Acceleration (a=v _f -v _i /t)	<u>Mass</u> (<u>kg)</u>	<u>Force</u> (<u>mass*a)</u>
Trial 1 time:		<u>6m</u>			<u>.453492</u>	
<u>Trial 2</u> time:		<u>6m</u>			<u>.453492</u>	
Trial 3 time:		<u>6m</u>			<u>.453492</u>	
Average:		<u>6m</u>			.453492	

Set Sphero speed to 50%	Time (s)	Distance (m)	Final Velocity (v=d/t)	Acceleration (a=v _f -v _i /t)	Mass (kg)	Force (mass*a)
Trial 1 time:		6m			.453492	
Trial 2 time:		6m			.453492	
Trial 3 time:		6m			.453492	
Average:		6m			.453492	

Set Sphero speed to 75%	Time (s)	Distance (m)	Final Velocity (v=d/t)	Acceleration (a=v _f -v _i /t)	Mass (kg)	Force (mass*a)
Trial 1 time:		6m			.453492	
Trial 2 time:		6m			.453492	
Trial 3 time:		6m			.453492	
Average:		6m			.453492	

Set Sphero speed to 100%	Time (s)	Distance (m)	Final Velocity (v=d/t)	Acceleratio n (a=v _f -v _i /t)	Mass (kg)	Force (mass*a)
Trial 1 time:		6m			.453492	
Trial 2 time:		6m			.453492	
Trial 3 time:		6m			.453492	
Average:		6m			.453492	

 Create a graph for each of the following: Average Velocity (d/t graph) and Accele How does the Sphero's set speed affect the time it takes for the Sphero to trave 	` • ,
Using the average numbers only, explain how the set speed affects acceleration	
4. How did the force change with an increased speed?	