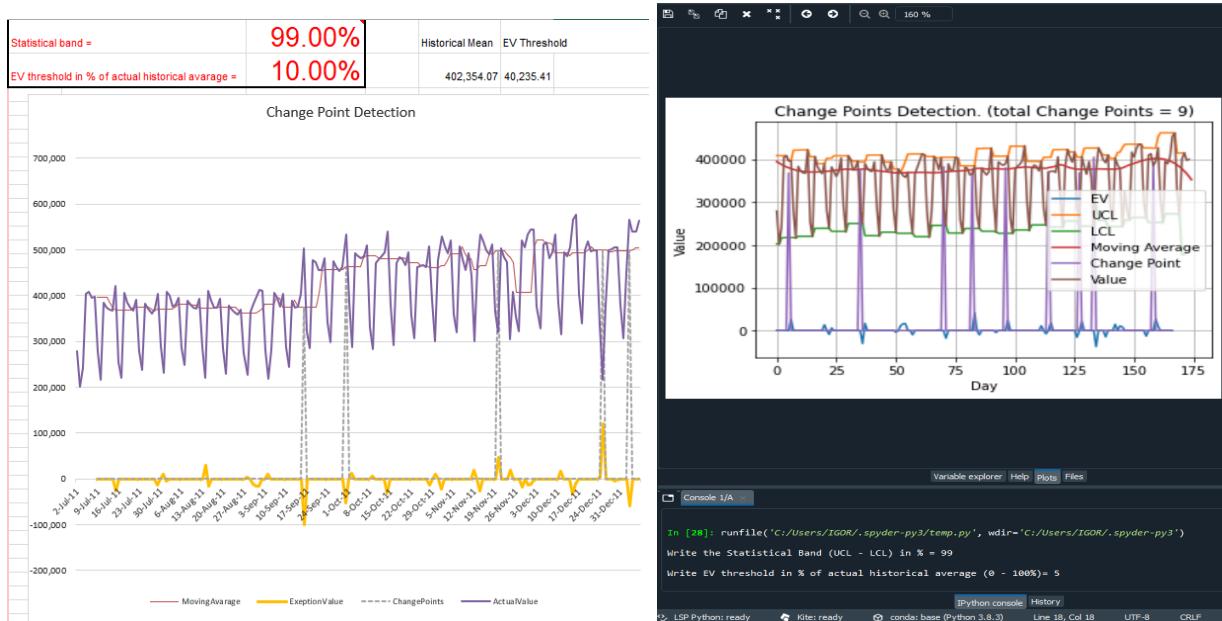


CMG'25 Hackathon guidelines

ANNONCE (to publish before conference)


The task is to find some change points and/or anomalies in the given time stamped data to see different phases/patterns .

Participants can use any tools or libraries/packages (in R, Python and so on) to detect change points and/or anomalies in the data.

Or they can use the free Change Points detection API (e.g. via [Postman.com](#)) described in [Change Point Detection is implemented in the free web tool Perfomalist](#)

Particularly the instruction on how to use that is described [here](#).

To visualize the result any spreadsheet charting could be used or other means (e.g. python, R and so on). Examples are on the following picture:

The time to work on the task - 3 hours.

The result would be judged by CMG experts and the winner will get an award and time to make a short presentation.

Vendors of similar tools are welcome to participate.

If participants would like to use MATLAB for anomaly detection tools, we have a licensed version available here:

URL for event page: <https://www.mathworks.com/licensecenter/classroom/4866200/>

1. this will take you to a MathWorks account Sign-in page.
2. Create an account or use an existing account
3. Press "Access MATLAB Online" button followed by "Open MATLAB Online"

On site activities

Data to test: <https://github.com/numamenta/NAB/tree/master/data>

Particularly the following csv files:

Name	Owner	Last modified	File size
Twitter_volume_IBM.csv	me	12:04 PM	343 KB
Twitter_volume_GOOG.csv	me	12:04 PM	353 KB
Twitter_volume_FB.csv	me	12:04 PM	351 KB
Twitter_volume_CVS.csv	me	12:03 PM	341 KB
Twitter_volume_KO.csv	me	12:01 PM	347 KB
Twitter_volume_PFE.csv	me	12:01 PM	341 KB
Twitter_volume_UPS.csv	me	12:01 PM	342 KB
Twitter_volume_CRM.csv	me	12:00 PM	343 KB
Twitter_volume_AMZN.csv	me	12:00 PM	356 KB
Twitter_volume_AAPL.csv	me	11:59 AM	359 KB

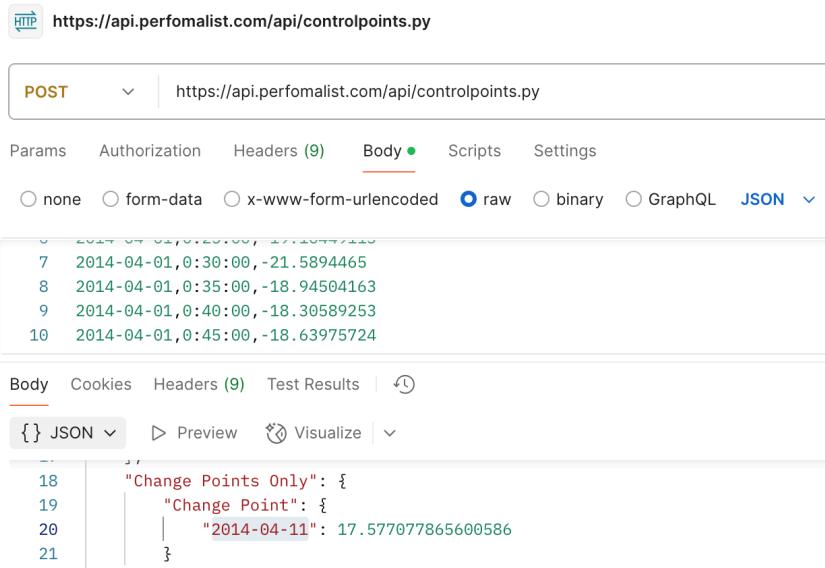
LINK TO THE FOLDER WITH DATA IS [HERE](#)

EXAMPLE 1

Simple case: [art_daily_flatmiddle.csv](#)

Tool is [performalist.com](#) Change Point detection API described [HERE](#)

1st step to change the format of the data (using EXCEL or Google sheet means):
From original:


```
imestamp,value
2014-04-01 00:00:00,-21.0483826823
```

```
2014-04-01 00:05:00, -20.2954768676
2014-04-01 00:10:00, -18.127229468299998
2014-04-01 00:15:00, -20.1716653997
```

TO perfomalist form:

```
date, time, value
2014-04-01, 0:00:00, -21.04838268
2014-04-01, 0:05:00, -20.29547687
2014-04-01, 0:10:00, -18.12722947
2014-04-01, 0:15:00, -20.1716654
```

Then call perfomalist API (e.g. using postman.com)

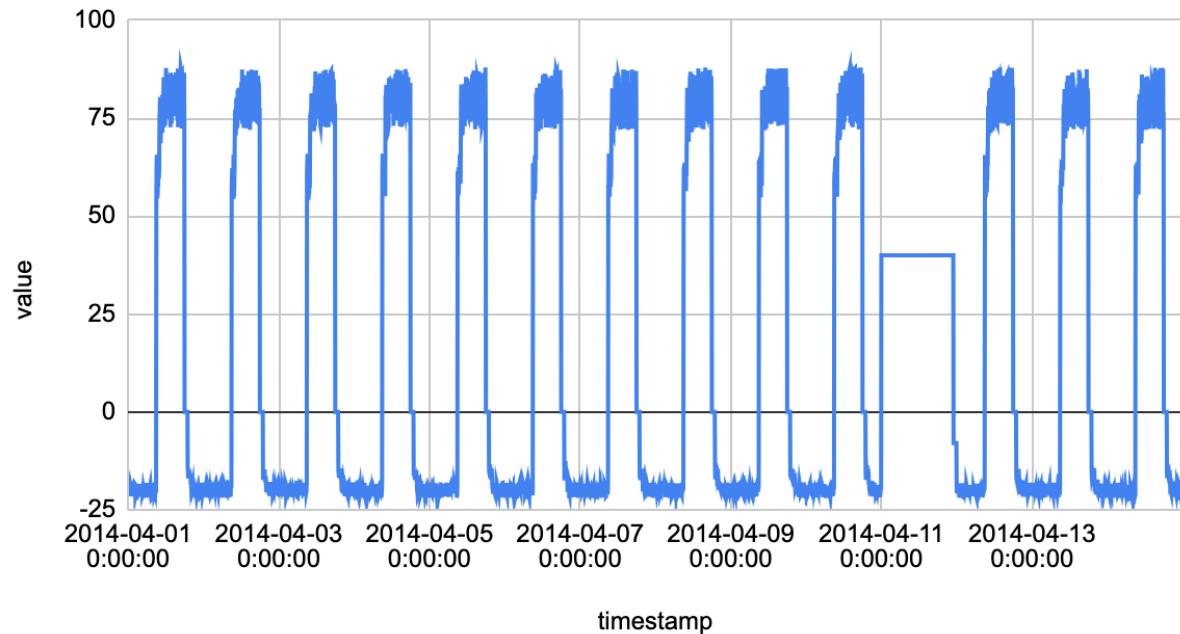
HTTP <https://api.perfomalist.com/api/controlpoints.py>

POST <https://api.perfomalist.com/api/controlpoints.py>

Params Authorization Headers (9) **Body** Scripts Settings

none form-data x-www-form-urlencoded raw binary GraphQL **JSON**

```
7 2014-04-01,0:30:00, -21.5894465
8 2014-04-01,0:35:00, -18.94504163
9 2014-04-01,0:40:00, -18.30589253
10 2014-04-01,0:45:00, -18.63975724
```

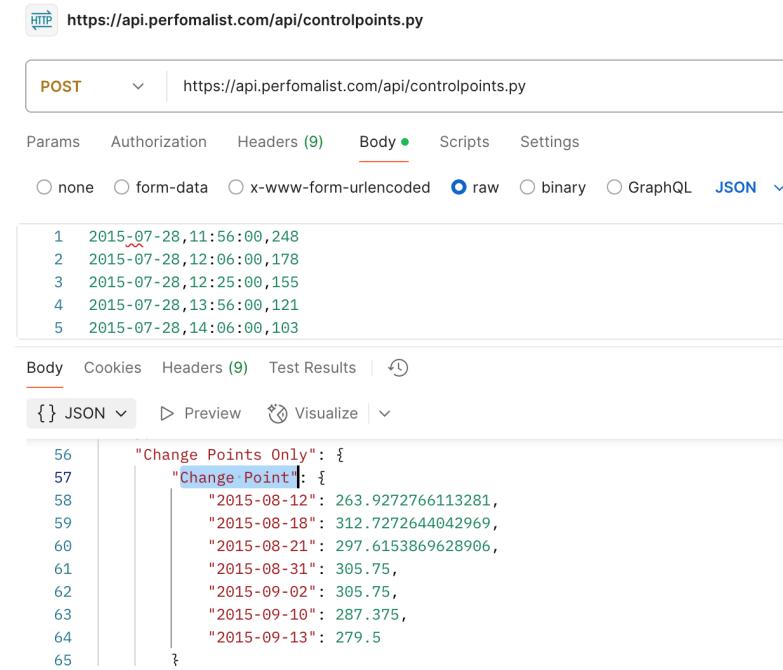

Body Cookies Headers (9) Test Results

{ } JSON ▾ ▶ Preview ⚡ Visualize

```
18  "Change Points Only": {
19    "Change Point": {
20      "2014-04-11": 17.577077865600586
21    }
}
```

The result is one change point on 2014-04-11, which can be easily validated by building the spreadsheet chart (see below):

value vs. timestamp



EXAMPLE 2

More difficult case:

https://github.com/numenta/NAB/blob/master/data/realTraffic/TravelTime_451.csv

After repeating the above steps (see Example 1) the result should show several change points:

POST https://api.perfomalist.com/api/controlpoints.py

Params Authorization Headers (9) Body Scripts Settings

Body (raw) JSON

1 2015-07-28,11:56:00,248
2 2015-07-28,12:06:00,178
3 2015-07-28,12:25:00,155
4 2015-07-28,13:56:00,121
5 2015-07-28,14:06:00,103

Body Cookies Headers (9) Test Results

{ } JSON ▾ Preview Visualize

```
56 "Change Points Only": {  
57     "Change Point": {  
58         "2015-08-12": 263.9272766113281,  
59         "2015-08-18": 312.7272644042969,  
60         "2015-08-21": 297.6153869628906,  
61         "2015-08-31": 305.75,  
62         "2015-09-02": 305.75,  
63         "2015-09-10": 287.375,  
64         "2015-09-13": 279.5  
65     }  
}
```

To reduce the number of change points one can explicitly provide as a 1st 3 lines in the data the following tuning parameters:

- **sValue** - Statistical band in %, where 100 is UCL=MAX, 0 is UCL=LCL=mean). (**normality**)
- **eValue** - Exception Value (EV) threshold in % of actual historical average. (**insensitivity**)
- **BaseLineLength** - The time period to compare current value against.

After adding there

```
sValue, 99  
  
eValue, 20  
  
BaseLineLength , 7
```

The API returns only 3 change points:

HTTP <https://api.perfomalist.com/api/controlpoints.py>

POST <https://api.perfomalist.com/api/controlpoints.py>

Params Authorization Headers (9) **Body** Scripts Settings

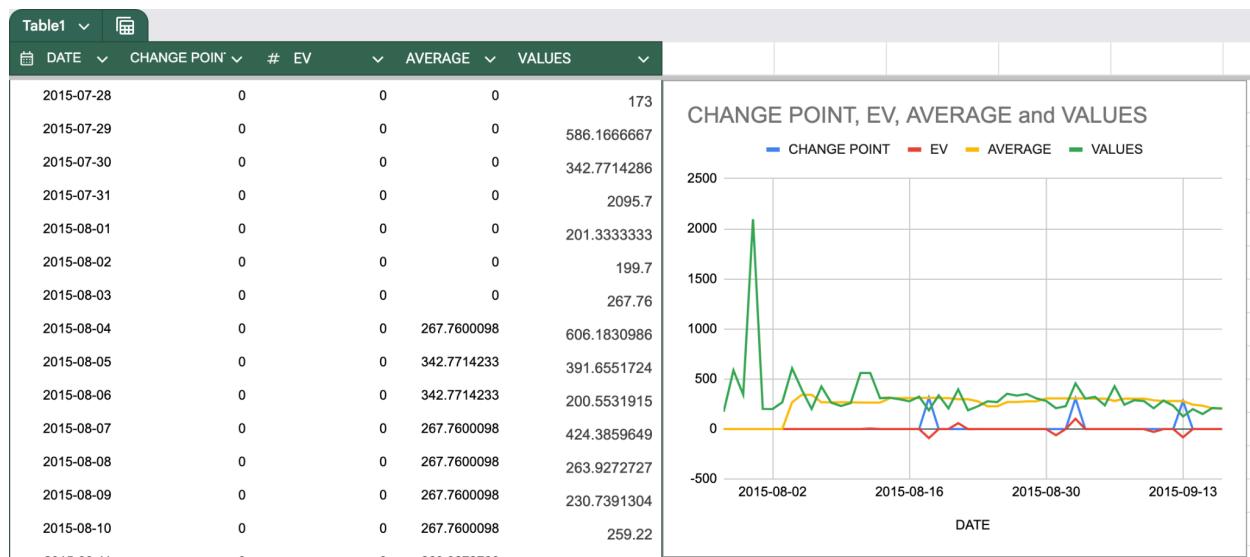
none form-data x-www-form-urlencoded raw binary GraphQL **JSON**

```

1 sValue, 99
2 eValue, 20
3 BaselineLength, 7
4 2015-07-28,11:56:00,248
5 2015-07-28,12:06:00,178

```

Body Cookies Headers (9) Test Results


{ } JSON ▾ ▶ Preview ⚡ Visualize ▾

```

56 "Change Points Only": {
57   "Change Point": {
58     "2015-08-18": 312.7272644042969,
59     "2015-09-02": 305.75,
60     "2015-09-13": 279.5
61   }
}

```

Putting the API output to EXCEL or Google sheet one can visualize the result by showing phases in the data between change points (see below):

