

Grade 6 Science Curriculum Map Quarter 4: 2025-2026

March 9, 2026 - May 21, 2026

Calendar Dates

iLearn Checkpoint 3: March 9 - March 13

Spring Break: March 3- April 3

iLearn: April 13 - May 8

Unit Topic Ecosystems

Essential Questions

How do matter and energy move through organisms and the environment? How are interacting populations of organisms affected by changes to ecosystems? Why is biodiversity important and how can it be protected?

Science Standards: MS-LS2-3 MS-LS2-4

Additional Standards:

Dates	Topic	CER Question	Standards	Objective	Academic Vocabulary
3/9 - 3/13	Volume 1 Module 4 Lesson 3 Changing Ecosystems	How do natural and human disruptions to physical and biological components of ecosystems result in shifts in populations?	MS-LS2-4 - Essential Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.	Students will explore the dynamic nature of ecosystems, focusing on both natural changes and human disruptions. They will evaluate how and argue that changes to physical or biological components of an ecosystem affect within the ecosystem.	Ecological succession, climax community, eutrophication, dynamic equilibrium
3/16 - 3/20	Volume 1 Module 3 Lesson 3	How does matter cycle through the environment?	MS-LS2-3 Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	Students will develop models to describe how matter cycles through living and nonliving parts of the ecosystem. They will understand that atoms are conserved as they cycle through the ecosystem.	Evaporation, condensation, precipitation, nitrogen fixation

Cycling of Matter		
-------------------	--	--

March 9, 2026 - May 21, 2026

Calendar Dates

iLearn Checkpoint 3: March 9 - March 13

Spring Break: March 3- April 3

iLearn: April 13 - May 8

Unit TopicIntroduction to Waves

Essential Questions

How do waves travel through matter? Why can light be modeled as a wave?

Science Standards:

Additional Standards:

Assessments	Resources/Projects
Introduction to Waves Test give test by 5/8	

Dates	Торіс	CER/R.A.C.E Question	Standards	Objective	Academic Vocabulary
3/23 - 3/27	Volume 2 Module 2 Lesson 1	How do the properties of mechanicals waves correspond with observations of waves?	MS-PS4-1. Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.	Students will explore mechanical wave properties by modeling mechanical waves using mathematical representations and identifying patterns in data gathered by observing a variety of mechanical waves	Wave, mechanical wave, medium, transverse wave, longitudinal wave, sound wave, amplitude, loudness, intensity, wavelength, frequency, pitch,

3/30 - 4/3 Spring Break

		ı			
4/6 - 4/10	Volume 2 Module 2 Lesson 2 Mechanical Wave Interactions	How are mechanical waves reflected, absorbed, and transmitted through various materials?	MS-PS4-2 - Essential Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.	Students will use structures to investigate how mechanical waves are reflected, absorbed, or transmitted through various materials, and develop models to describe the phenomena they observe	Reflection, absorption, transmission, diffraction,
4/13 - 4/17	Volume 2 Module 3 Lesson 1	How are light waves similar to and different from mechanical waves in how they travel and interact?	MS-PS4-2 - Essential Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.	Students will develop and use models to describe lights path as straight lines and to describe how objects function to interact with light waves through reflection, absorption, and transmission.	Light, radiant energy, transparent, translucent, opaque
4/20 - 4/24	Volume 2 Module 3 Lesson 2	How does light reflect?	MS-PS4-2 - Essential Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.	Students will develop and use models to investigate how light interacts with matter through reflection. They will examine the structure and function of plane, convex, and concave mirrors.	Law of reflection, virtual image, concave mirror, focal point, real image, regular reflection, diffuse reflection
4/27 - 5/1	Volume 2 Module 3 Lesson 3	How does light refract through materials?	MS-PS4-2 - Essential Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.	Students will develop and use models to investigate how light interacts with matter through transmission and refraction. They will trace the path of light where it bends at surfaces between different transparent materials by examining the structure and function of convex and concave lenses.	Refraction, lens, convex lens, concave lens,
5/4 - 5/8	Volume 2 Module 3 Lesson 4	What are colors?	MS-PS4-2 - Essential Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.	Students will explore the function of prisms and raindrops in the frequency-dependent bending of light at a surface between media that results in the separation of the colors of light. They will develop and use models to explain how the colors of objects depend on the object's material and the frequency (color) of the light.	

Calendar Dates

iLearn Checkpoint 3: March 9 - March 13

Spring Break: March 3- April 3

iLearn: April 13 - May 8

<u>Unit Topic</u> Informational Technologies

Essential Questions

How does technology allow people to share information?

Science Standards:

Additional Standards:

Assessments	Resources/Projects

Dates	Topic	CER/R.A.C.E Question	Standards	Objective	Academic Vocabulary
5/11 - 5/15	Volume 2 Module 4 Lesson 1	How do people communicate?	MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.	Students will explore different ways that information can be encoded and transmitted, while obtaining, evaluating, and communicating information about the role of science in developing and using information technologies	Signal, noise
5/18 - 5/22	Volume 2 Module 4 Lesson 2	Why are digital signals more reliable than analog signals?	MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.	Students will compare digitized signals to analog signals, constructing explanations about how noise can cause an analog signal to degrade over time, whereas a digital signal can be reproduced and transmitted consistently.	Analog signals, digital signal, binary numbers,