
COP290

Semester 2 2022-23

Lab 1

Part 1: Typing

Why? The faster you type, the faster you code. We do not want to spend any

conscious energy on typing. All your conscious energy can be spent on

thinking about the code that you are writing.

Learn touch typing from: https://www.typingstudy.com

Do one lesson everyday. With regular practice, you shall be able to come

to 60 to 70 words per minute. You may regularly measure your typing speed

here: https://www.typingstudy.com/speedtest

Part 2: Editing

Why?

●​ You will need to code in a variety of environments such as by

logging into a remote server or into an embedded device. GUI-based

editors may not be available there.

●​ Touching the trackpad/mouse and clicking buttons is very slow.

Learn vim. (If you already know some Emacs, then you can just sharpen your

Emacs skill instead).

Basic: run vimtutor in a Linux terminal.

Advanced (optional):

●​ You should try learning “.” and writing basic macros.

●​ https://github.com/iggredible/Learn-Vim

Part 3: Shell scripting

Why? You can save a lot of time writing one-off programs if you are

comfortable with basic shell scripting.

Note: It’s best to work in a Linux environment with bash. Same commands in

other shells like zsh (default on Mac) may have different semantics. You

can know your shell type by running:

echo "$SHELL"

You can also force Mac to use bash by running your script like

bash ./script.sh instead of like ./script.sh

https://www.typingstudy.com
https://www.typingstudy.com/speedtest
https://github.com/iggredible/Learn-Vim

We will use a linux machine for all the evaluations. Thus we recommend

testing your scripts on a linux based machine at least once. If you do not

have a Linux machine, you may request a virtual machine from

https://baadal.iitd.ac.in/user/request_vm. Once allotted, you can access

it using ssh.

Commands to learn: ls, cd, rm, mv, cp, touch, top, pwd, mkdir, ln, cat,

echo, grep, awk, sed, parallel, cut, sort, uniq, wc, head, less, xargs,

ping, nmap, ssh, find, tree

You can run `man <command>` to learn about a command.

Some resources:

1.​ http://linuxcommand.org/lc3_learning_the_shell.php
2.​ https://ryanstutorials.net/bash-scripting-tutorial/
3.​ https://www.geeksforgeeks.org/bash-script-arithmetic-operators/

Some practice problems:

Question 1 (Count Files)

Count the number of text files starting with a given prefix within a given

directory.

Write a script count_files.sh that takes 2 arguments

1.​ Path of the directory: This is where you will search for the files
2.​ Prefix: Only files whose names begin with the specified prefix shall

be counted

3.​ Recursive (true or false): This parameter will only take values
"true" or "false". If recursive is set to true then you also need to

search for the subdirectories in the path mentioned. Otherwise you

will only report the files present in the root of the directory

mentioned

Note: Script has to give the output to stdout. If the path is invalid (not

a directory) or passed parameters are not valid then your script should

output relevant error messages and exit with error code -1.

Examples:

Directory structure of /Users/vishal

.

├── 1.txt
├── 2.txt

https://baadal.iitd.ac.in/user/request_vm
https://ryanstutorials.net/bash-scripting-tutorial/
https://www.geeksforgeeks.org/bash-script-arithmetic-operators/

├── abc1.txt
├── abc2.txt
└── subdir
 ├── 4.txt
 └── abc3.txt

bash ./count_files.sh . abc true
3

Recursive search is enabled thus sub directory is included. For the directory

path I have passed "." which means current directory. Files counted are

abc1.txt, abc2.txt and abc3.txt.

bash ./count_files.sh /Users/vishal abc true
3

Recursive search is enabled thus sub directory is included. Files counted are

abc1.txt, abc2.txt and abc3.txt

bash ./count_files.sh /Users/vishal abc false
2

Recursive search is disabled thus sub directory is excluded. Files counted are

abc1.txt and abc2.txt/

bash ./count_files.sh /Users/vishal "" false
6

Prefix passed is empty thus the script will count all the txt files.

bash ./count_files.sh /Users/vishal/popo "" false (TODO Check)
/Users/vishal/popo is not a directory

and exit with error code -1

bash ./count_files.sh . "" true2

recursive should take only true or false values

and exit with error code -1

Question 2 (Arithmetic Operations)

Write a script evaluation.sh that takes input file as an argument and

gives final value after all the arithmetic operations.

You only need to handle +, -, *, / and %. All of these are integer

operations. Look at the following examples for better understanding.

Note: Script has to give the output to stdout. If the path is invalid (not

a file or invalid file) or passed parameters are not valid then your

script should output relevant error messages and exit with error code -1.

Example 1

input.txt

10 +

20 -

2 *

4 /

10 +

2 %

bash evaluation.sh input.txt

1

0 + 10 = 10

10 - 20 = -10

-10 * 2 = -20

-20 / 4 = -5

-5 + 10 = 5

5 % 2 = 1

Example 2

input.txt

10 +

20 -

2 *

6 /

10 +

bash ./evaluation.sh input.txt

7

0 + 10 = 10

10 - 20 = -10

-10 * 2 = -20

-20 / 6 = -3 (Integer Division)

-3 + 10 = 7

Part 4: make

Why? You can automate any step by step process such as compiling your

project by using make.

Resource: https://makefiletutorial.com/

All the required files are in starter code. Check the submission

instructions for the link.

Given project directory structure

.

├── dependencies
│ └── header.h
├── input.txt
├── main.c
├── makefile (1) -> Work on this file
├── src1
│ ├── makefile (2) -> Work on this file
│ └── square.c
└── src2
 ├── add.c
 └── makefile (3) -> Work on this file

makefile in the root directory should have following targets

1.​ pre-build
a.​ Should create obj and exe directories if not already present.

Otherwise do nothing.

2.​ all
a.​ Should call make pre-build
b.​ Call make files of src1 and src2 recursively. Make files of

src1 and src2 should create object files in the obj directory.

c.​ Make the executable. Final executable myApp should be created
in the exe directory.

3.​ run
a.​ Should run the executable created.

4.​ clean
a.​ Calls make clean recursively for src1 and src2 (Will make the

obj directory empty)

b.​ Then delete exe and obj directories.

makefiles in src1 and src2 will have following target

1.​ default
a.​ Create the object file for .c file

2.​ clean
a.​ Delete the object file or any other temporary files created.

https://makefiletutorial.com/

Examples

Before Command After

.
├── dependencies
│ └── header.h
├── input.txt
├── main.c
├── makefile
├── src1
│ ├── makefile
│ └── square.c
└── src2
 ├── add.c
 └── makefile

make pre-build .
├── dependencies
│ └── header.h
├── exe
├── input.txt
├── main.c
├── makefile
├── obj
├── src1
│ ├── makefile
│ └── square.c
└── src2
 ├── add.c
 └── makefile

Before Command After

.
├── dependencies
│ └── header.h
├── input.txt
├── main.c
├── makefile
├── src1
│ ├── makefile
│ └── square.c
└── src2
 ├── add.c
 └── makefile

make all .
├── dependencies
│ └── header.h
├── exe
│ └── myApp
├── input.txt
├── main.c
├── makefile
├── obj
│ ├── add.o
│ └── square.o
├── src1
│ ├── makefile
│ └── square.c
└── src2
 ├── add.c
 └── makefile

$ make run
./exe/myApp
hello world

Before Command After

.
├── dependencies
│ └── header.h
├── exe
│ └── myApp

make clean .
├── dependencies
│ └── header.h
├── input.txt
├── main.c

├── input.txt
├── main.c
├── makefile
├── obj
│ ├── add.o
│ └── square.o
├── src1
│ ├── makefile
│ └── square.c
└── src2
 ├── add.c
 └── makefile

├── makefile
├── src1
│ ├── makefile
│ └── square.c
└── src2
 ├── add.c
 └── makefile

Subdirectories src1 and src2 should also have proper make files

$ make clean
$ make pre-build
$ cd src1
$ make
$ ls ../obj
square.o
$ cd ../src2
$ make
$ ls ../obj
add.o square.o
$ make clean
$ ls ../obj
square.o

Submission Instructions
1.​ Download the starter code from here and unzip the file
2.​ Modify the required files

a.​ part3/q1/count_files.sh
b.​ part3/q2/evaluation.sh
c.​ part4/makefile
d.​ part4/src1/makefile
e.​ part4/src2/makefile

3.​ Change the directory name to <entry_no> and rezip the directory
4.​ Submit <entry_no>.zip

Zip file <entry_no>.zip on unzipping should give a folder which will

contain all the relevant files.

(base) ➜ testing unzip 2018CS50426.zip

(base) ➜ testing tree

.

├── 2018CS50426
│ ├── part3
│ │ ├──

https://csciitd-my.sharepoint.com/:f:/g/personal/cs5180426_iitd_ac_in/Eogv_4IhGWRHphI9c96XTScBef1TNeMYzDFgK5MWy2OAcQ?e=sZEMP9

| ...

└── 2018CS50426.zip

10 directories, 17 files

(base) ➜ testing ls

2018CS50426 2018CS50426.zip

