
The New Ant Tracker Documentation

Brief Introduction
●​ The tracking software is heavily based on Srini Ananthakrishnan’s Kalman Filter

Multi-Object Tracking Repo.

Track.py
●​ Tracking starts with track.py
●​ track.py parses all the arguments provided by the user in config.yaml to run the tracker.
●​ As seen in the snakefile, track.py accepts many command-line arguments:

○​
●​ If you want to change any command-line arguments, change them in the config.yaml file

and not the constants.py file.
○​ constants.py is only useful when running the pipeline locally or without the use

of the config.yaml file
●​ The whole point of track.py is to parse all the arguments and then call trackOneClip, a

function in track_one_clip.py.

Track_one_clip.py
●​ The tracking software depends heavily on OpenCV (Open Computer Vision)
●​ The trackOneClip function creates the detector and tracker objects

○​ detector: Detects the ants on the current frame of the video. It does not attempt to
categorize its detections. It returns the centers of each ant detected at that frame
(centers being the center of mass of the ant). (more details later)

https://github.com/srianant/kalman_filter_multi_object_tracking/blob/master/tracker.py
https://github.com/srianant/kalman_filter_multi_object_tracking/blob/master/tracker.py

○​ tracker: Takes the centers returned by detector and tracks the ants by matching up
detections across frames. (more details later)

●​ The trackOneClip function returns the tracker object, which contains all of the ant
tracks that were detected throughout the clip (basically what is important is the list of
histories inside the tracker object, we will discuss this later).

●​ trackOneClip.py also contains the make_history_CSV function. This function takes the
tracker object outputted by the trackOneClip function as well as an output path. It then
makes the track CSV file (contained in intermediate/track), which contains
information about every ant track that was detected even those which are clearly not ants.

●​ trackOneClip.py also contains the make_merge_vids function. This function reads the
track CSV created by the make_history_CSV function. Some rows will have data in the
“merge_id, merge_time, unmerge_id, unmerge_time” columns. This function will get
these times and trim the video such that the output will only contain parts of the video
where a supposed merger and/or unmerger has occurred

○​ There will be two video outputs, one with annotations and one without.

Detector.py
●​ detector.py takes as input a frame of a video (of an ROI, or Region of Interest). It is its

own python file and it contains the Detector class. It is called by track_one_clip.py and
creates a Detector object.

○​ Example:

○​
●​ Then, it does a multitude of steps (grayscaling, blurring, edge detection, etc.), such that

the ant is the only thing that is pronounced

○​
●​ We then can confidently identify each center for this one frame. We also detect the

calculate the area of pixels contained within the edges. We then return both the centers
(as a list of coordinates for each center) and the corresponding area.

Tracker.py
●​ tracker.py contains three classes: History, Active_Track, and Tracker
●​ Both History and Active_Track only contain data → ie they have no functions

associated with them
●​ Tracker class: tracks the ants in a given frame

○​ Object Initialization: Creates a list of Active_Tracks and Histories ← will be
explained later

■​ The list of Histories will be used to make the csv file with the function
make_history_CSV.

○​ copy_track_to_history static function: copies the information from an
Active_Track to its corresponding History (how to find corresponding
Active_Track to History will be explained later)

○​ Update function: As input, it takes the coordinates of ants detected by
detector.py as well their corresponding area

■​ Given the coordinates, it then predicts the next coordinate
■​ Also with the coordinates, it determines whether or not it is part of an

existing track or if a new track has to be created
■​ It also detects whether or not a merger/unmerger has occurred

●​ Active_Track class: records real-time data of an ant track that is currently on the frame
or has just recently left the track. Once the ant has left the frame for a while (i.e. it's no
longer active), its associated Active_Track object will be deleted.

●​ History class: records real-time data of an ant track. But unlike Active_Track, the object
will never be deleted, even after the ant is no longer active on the frame.

○​ Important: each ant is given an ID when they are first seen on the frame. This ID
corresponds to the element index in the histories list in the Tracker class.

	The New Ant Tracker Documentation
	Brief Introduction
	Track.py
	Track_one_clip.py
	Detector.py
	Tracker.py

