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CPython 3.11 introduced PEP 659: Specializing Adaptive Interpreter (SAI), significantly boosting 
single-threaded performance. That work however, implicitly depends on the GIL being enabled. 
In CPython 3.13, an option to remove the GIL was added to CPython, with the SAI disabled. 
Users thus have to choose between better single threaded performance, or better 
multi-threaded performance. 
 
This document proposes the first step towards reconciling that difference – making the 
specializing adaptive interpreter usable without the GIL. Included are design considerations, 
ideas considered, and possible tradeoffs. I target a 25% performance gain in single-threaded 
code from this effort for free-threaded builds. 
 
Ideally, we should not diverge how we treat specialized bytecode formats between free-threaded 
and GIL-builds. Having separate behavior for both would increase maintainer burden. We can 
ifdef the usual atomics and friends but more egregious changes like changing the bytecode 
format should be maintained across both versions. 
 
A maximum 1% performance loss on pyperformance on the default build’s (with GIL) SAI should 
be acceptable, and I target no memory increase for single-threaded applications, though 
multi-threaded applications may use more memory. I expect that this loss on performance will 
be offset by the Tier 2 JIT compiler work anyways, so overall there should still be a net speedup. 
Note that some of the free-threaded work also overlaps with, and lays the foundation for the Tier 
2 optimizer work. For example, PEP 703’s deferred reference counting’s setup can also be used 
for unboxed integers in the Tier 2 optimizer in CPython 3.14. 

Design 
The main design idea is as follows: Instead of locks, do our best to layout our data in a thread 
safe manner and use atomics. For objects that are not shared across multiple threads, preserve 
a happy fast path, otherwise if the objects are shared, use locks. This takes inspiration from 
multiple papers, such PEP 703. This document also uses some terminology from “Efficient and 
Thread-Safe Objects for Dynamically-Typed Languages” (Daloze, Marr, Bonetta & Mössenböck, 
2016). 
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Keeping caches alive 
Inline caches mostly hold things that are safe on their own – like version numbers. However, 
they also hold borrowed references to method descriptors. Additionally, heap types store caches 
to __init__ and __getitem__ in the type object itself. 
 
For inline cache method descriptors, we shall mark all inline-cached method descriptors as 
deferred (see deferred reference counting in PEP 703). This should already be happening since 
method descriptors ought to be deferred anyways. Code objects need to support GC (they 
already do in the free threaded build), and we must teach the GC to traverse the code object’s 
inline caches. For this, Stefan Marr suggested keeping a bitmap of all method references in the 
bytecode and quickly traversing that. This will keep the borrowed references alive. The 
equivalence in literature is that the bytecode array now becomes a “zero count table” of sorts. 
Since GC becomes more expensive, we should probably switch to the incremental GC. 
 
For heap types, we can simply make them per-thread or copy-on-write. 
 
Alternatives: making inline caches strong references. This is untenable, as we incur refcounting 
overhead during specialization, and we also complicate deoptimizations. Current 
deoptimizations are essentially side-effect free with a few notable exceptions (like materializing 
a dictionary). 

Defer GC to CHECK_EVAL_BREAKER / GC for deferred method 
is already safe 
 
To make this effective, we must mark every method of a type as deferred (or at least, anything 
that could be in _PyType_Lookup). The CHECK_EVAL_BREAKER must also only do a sweep if 
all threads have signaled the eval breaker at least once. This ensures we don’t free a method 
while a thread is executing in the middle of a bytecode instruction. I think this is already done. 
 
Note: the difference with how things are right now is that any Py_DECREF call could call a 
destructor, which runs arbitrary code, like potentially running the GC. So we have no clue if a 
borrowed method will be safe to access, even if it is deferred. Consider the following scenario: 
 

1.​ Two threads, A and B. 
2.​ Thread A grabs a deferred method from inline cache, preparing to read it. 
3.​ Thread B overwrites that inline cache with a new method, also calling Py_DECREF and 

triggering GC. 
4.​ Despite A’s method being deferred, the GC does not see it as it’s no longer reachable 

from any roots (not in code object, not in stack). 
5.​ GC thus cleans up A’s deferred method. 
6.​ A tries accessing the deferred method. Segfault. 

 



Sam pointed out that: “Thread B cannot start a GC without Thread A's cooperation. The GC has 
a stop-the-world pause so every thread is either in the eval breaker or some other state that 
could have released the GIL. In those cases, it's already not safe to have unprotected borrowed 
references.” 
 
 
Addendum: 
Mark Shannon planned to do this already, but I’m going to re-propose its value here anyways. 
Not having to care about whether a GC could run in between specializations is a significant 
simplification. 
 
Mark’s current plans of deferring GC altogether has some folks concerned. The main concern is 
that there could be libraries that depend on the prompt finalization would otherwise run out of 
memory. That would break existing Python code. 
 
However, this approach preserves that (implementation-dependent) behavior, by only deferring 
GC sweep (stop the world) of methods to cooperative safepoints (CHECK_EVAL_BREAKER). 

Handling Bytecode Rewriting 
A key design feature of the SAI is bytecode rewriting – ie specialization or quickening. This 
allows the SAI to adapt to new behaviors observed in user code. Self-modifying bytecode brings 
race conditions and Python semantic concerns. 
 
I suggest we should handle bytecode rewriting without any locking, and defer most of the 
complexity to the specializing infrastructure. This will ensure good multi-threaded performance 
and good single-thread performance. There are two options. A. or B. 
 

Option A: Make bytecode per-thread 
For this, we shall duplicate bytecode objects when they are being executed by the non-owning 
thread. This is a simple scheme, that also makes reasoning about inline cache consistency 
simpler, but it comes with significant memory cost, and also some runtime cost considering 
every single function that needs specialization needs bytecode copying. 
 
Note: Donghee Na and Matt Page both suggested some form of RCU (Read-copy-update). 
Perhaps we could duplicate bytecode on the first specialization? The added benefit of that is no 
cache layout change required on the default build. The other benefit is that we no longer need 
atomic reads of the bytecode or locked writes with such a scheme. Perhaps performing better 
as well. 
 



 

 

 
An additional optimization would be to keep updated bytecode interned and re-use them for 
other threads whenever threads start and die. 
 



The bytecode duplication scheme would keep a linked list of bytecode per code object. Each 
bytecode also keeps a counter on the number of “users” (ie frames). Upon first specialization of 
a code object that has multiple users, the code object is duplicated. Thus the scheme is lazy. 
 
To reduce refcounting overhead, the linked list of bytecode will be marked as deferred. The GC 
shall scan the bytecode linked list to see if they should be kept alive. 
 
For recursive calls, the bytecode may wrongly detect there are multiple users because there are 
multiple frames on the stack. There are two solutions I can think of: 
 

1.​ There needs to be a set of thread IDs that have been seen in a py_hashtable of sorts. 
Duplication will thus look at this table to determine if copying is indeed required. This 
means that only for recursive calls, a lookup is incurred on every successful 
specialization attempt. We may need a better solution to reduce the cost. Note that this 
should be an optimization for recursive calls. Ie. the cost of checking for a thread state ID 
should be < the cost of checking for duplication. Assuming a high-end 128 core server 
with 256 threads, this means a linear scan through such an array should at worst still be 
cheaper than copying the whole bytecode. This doesn’t seem scalable. OR 

2.​ Before every escaping call, decrement the number of users on the frame, then after the 
call, increment it again. This seems scalable, but would hurt single-threaded perf a slight 
bit. On the other hand, most specializations are non-escaping. So if a program 
specializes well/optimizes in tier 2 well, this should be okay. 

 

Option B: Make bytecode modification multi-thread compatible 
 
For this, we do not need to differentiate between shared and unshared objects, because 
specialization has an exponential backoff – it should naturally be a once in a blue moon type of 
operation. Reads from cache need to use acquire atomic loads. Writes to cache need to use 
mutexes on the code object. Specialization itself (changing the bytecode instruction) needs 
release atomic writes. 
 
The key observation is that specialization only exists within a bytecode family, and bytecode 
families are all (to the user at least), semantically equivalent to each other. Even if a thread 
reads a wrong bytecode specialization and executes it, it should safely deoptimize to the original 
bytecode. Thus I propose the following design: 
 

1.​ For specialization and de-opt, we need to atomically write instructions and their inline 
caches to the bytecode object. We can write this in sequence, without any locks, only if 
step 2. Is implemented. 

2.​ We must ensure equivalent cache layout among an entire family. This will increase 
memory usage slightly. What I mean by equivalent layout is this: take for example the 
LOAD_ATTR (method) variant’s inline cache entry: 

typedef struct { 



   _Py_BackoffCounter counter; 
   uint16_t type_version[2]; 
   union { 
       uint16_t keys_version[2]; 
       uint16_t dict_offset; 
   }; 
   uint16_t descr[4]; 
} _PyLoadMethodCache; 

To save space, the cache uses a union of keys version and dictionary offsets. In the 
proposed schema, it is unsafe to do this because the guards might wrongly interpret 
something as safe and let the unsafe operation execute. What should happen is the 
layout should look like this: 

typedef struct { 
   _Py_BackoffCounter counter; 
   uint16_t type_version[2]; 
   uint16_t keys_version[2]; 
   uint16_t dict_offset; 
   uint16_t descr[4]; 
} _PyLoadMethodCache; 

 
We waste some space, but instead gain lock-free reads and writes. 
Note: Sam pointed out that the fields which are multi-entry cannot be read atomically 
because they are not aligned. We either need a seqlock (hopefully not, because it’s 
slow) or manually align it ourselves (more wasted space). 

 
Note that if 1 and 2 are implemented, bytecode rewriting becomes thread safe (with some 
further caveats). 
 
Consider if the following case: 

1.​ Two Thread A and Thread B threads are executing the same bytecode instruction. 
2.​ Thread A rewrites _LOAD_ATTR_METHOD_WITH_VALUES to 

_LOAD_ATTR_METHOD_NO_DICT 
3.​ Thread B still sees the old _LOAD_ATTR_METHOD_WITH_VALUES and executes that. 
4.​ Thread B’s guards will automatically deoptimize and then execute the right instruction. 

 
This however, does not consider the case of if thread B is in the midst of executing something 
after it has already executed its guards. For that, we need a consistent snapshot of inline 
caches. That is the next section. 
 

Consistent Snapshot of Inline Caches 
One problem with C is the concept of a dangling pointer. A parallel runtime in something like 
Java, according to my interview with Benoit, makes things easier because once you have a 
reference to something, it will remain valid. 
 



The main goal: we do not want to segfault. It is also not okay to return wrong inline cached 
values. Note that however, we can avoid segfault, and return stale inline cache values if the 
Python code is inherently race-condition inducing, and the semantics are undefined. Also 
because the current status quo already would return stale cache values from something like 
_PyType_Lookup. 

Method descriptors 
Consider the following code: 
 
def call(obj): 

   obj.meth() 
 
The following scenario is acceptable, because it is not against Python semantics. The user 
probably just forgot to put a lock: 
 

1.​ Suppose we have two threads, A and B. 
2.​ A passes guards for LOAD_ATTR. 
3.​ B modifies obj’s MRO and overrides meth with meth1. 
4.​ Thread A now loads the old obj.meth(). 

 
In the current free-threading build, this will also likely segfault if the SAI is enabled. Once step 2 
happens, A now has a dangling reference to `meth` in its own LOAD_ATTR. However, thanks to 
the previous section on “Keeping caches alive” and “Delay GC of deferred objects to 
safepoints”, that problem is now fixed. Instead, the user then gets a stale cache value. This is 
acceptable because in this case, it is on the user to lock calling and writing to `obj.meth`. Python 
makes no guarantees that a change in one thread is atomically updated and shown in another 
thread (or does it previously with the GIL..? needs more research).  At the very least, even 
without inline caching, this is the behavior on the free-threaded build with _PyType_Lookup. 
 
Note: you might consider what happens if a method descriptor is invalidated by another thread, 
written to the inline cache, then a GC run happens, so the old cache entry disappears. Well 
recall the we are delaying GC of deferred objects to safepoints, so a GC run like that won’t 
happen. 
 

Namespaces and inlined values 
Handling namespaces or dictionaries (__dict__) is tougher than method descriptors. Consider 
the following scenario. 
 

1.​ Two threads, A and B, operate on a same object `obj`. 
2.​ Thread A is in the midst of LOAD_ATTR from `obj`, and passes the guards 
3.​ Thread B deletes the attribute A is accessing. 

 



At worst, this scenario segfaults, and at best, a stale value is obtained (ie, an invalid value of a 
new object that has taken the old object’s place). 
 
We do not want segfaults. However, in CPython’s specific implementation, a stale value should 
be safe to read (though not necessarily safe to dereference!), because the new value that is 
modified should reside at the address of the old location. This should also be the correct value 
to load, assuming the values’ layout has not changed (this assumption does not always hold, 
see the section on `changing the object’s values layout`). 
 
Thus the question becomes not “how do I ensure the index is valid?” but “how do I ensure the 
object I’m pointing to is valid?” Ie. it’s another dangling pointer problem. This time, however, we 
can’t use the same solution as before. We cannot defer namespace values as that might make 
them live unnecessarily long and break existing Python code, causing them to OOM. See the 
next section. 
 
Note: Sam pointed out that for most LOAD_ATTR specializations, _Py_TryIncrefCompare is 
enough for them. 

Invalidating when PyObject’s layout change 
 
Python objects have a few ways of storing values — either a values array directly inline in the 
object itself, a “lazy” dictionary, a key-sharing dictionary, or a full-blown dictionary. For ease of 
explanation, we shall just distinguish the inline values array and dictionary. 
 
Values array is thread-safe as long as we read and write atomically to it. However, it is not 
thread-safe in between specializations, as bytecode might change the “shape” of the dictionary.  
 
Consider the following example: 

1.​ Thread A’s LOAD_ATTR might have passed its guards and is preparing to load from a 
values array. 

2.​ Thread B executes STORE_ATTR which then cause the values array to be invalidated, 
and create a lazy dictionary instead. Such a materialization requires copying the inline 
values array to the lazy dictionary. This also implies the old address that the old entry 
was at in the values array will still hold valid data. So loading a stale entry from there will 
not segfault when reading the values array, though it might return a stale value. 

3.​ However, we might still segfault when operating on the object as a stale cache value 
may be a dead reference 

 
 
Notice that for method lookups loading stale data is fine — stale methods will never be dead 
because we defer them to GC safepoints. So LOAD_ATTR_*_METHOD variants are mostly 
safe thanks to the previous sections. In current free-threaded builds, we already return stale 
data due to _PyType_Lookup anyways, so there’s no behavioral change there. 
 



For globals, builtins, and attribute lookups,  dk_version and tp_version_tag is not a strong 
enough guarantee, because a stale cache value might be dead (no longer pointing to valid data) 
but the tag wouldn’t change. Similar to PEP 703, an optimistic fast path is to just read without 
lock. The key difference is we need to insert a few more guards to check our optimistic fast path 
is valid, and deoptimize otherwise (see PEP 703 for how this could be done). A 
_Py_TryIncrefCompare should be enough for most cases. 
 
Alternatives: 
 

1.​ Consider using dictionary watchers? 

Lists 
Same as PEP 703. For mutation: use critical sections. For reads, use _Py_TryXGetRef and no 
overhead if the object is not shared, fall back to slow path and lock on failure. 
 

Implementation Sequence 
I propose we start by implementing the simplest bytecode specializations and “handling 
bytecode rewriting” partially. 
 
So we start with BINARY_OP and friends. 
 
Next we implement delay GC of deferred objects to safepoints. That will allow us to implement 
some forms of LOAD_ATTR specialization: specifically, most of LOAD_ATTR_*_METHOD. 
 
LOAD_GLOBAL, and the rest of LOAD_ATTR and BINARY_SUBSCR then finally need the full 
“consistent snapshot of inline caches”.  
 
The goal is to all this working by CPython 3.14. We might leave out some of the LOAD_ATTR 
specializations that are more complex. 

Expected Performance 
 
Expected performance loss on default build (with GIL): 

-​ 0-2% pyperformance, from slightly increased inline cache sizes. The more branchy code 
is guarded by the usual ifdefs, so there should be no loss there. This is an upper bound I 
hope. Last I recall, shrinking inline caches brought not much performance gain anyways. 

-​ Maximum additional 5% memory usage, inline cache sizes. 
-​ OR 
-​ No change, due to RCU scheme on free-threaded builds. 



 
For free-threaded build: SAI boosted single-threaded performance on GIL builds by ~30%. I’m 
targeting a 25% single-threaded speedup for free-threaded builds from the SAI. The rough 
estimation is based on my memory of when I was working on the SAI. The following are the 
losses: 

-​ 0-2% pyperformance from slightly increased inline cache sizes. 
-​ 1-2% pyperformance from more branches in the happy path. 
-​ 1% miscellany 
-​ OR 
-​ 1-3% perf loss, due to RCU scheme on free-threaded builds. 

 
For multi-threaded scalability, most of the operations follow PEP 703 so the same arguments 
apply from there. Writing to bytecode will be slower, but the SAI has exponential backoff for 
specializations last I recall, so this should be fine. 
 

Open Questions 
1.​ Instrumentation? 
2.​ How to handle code explosion in tier 2 JIT if each thread can trigger its own trace 

compilation? 
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