
Pre/Post Processing and DLQ in RunInference
This document will outline several options for the desired user experience for 2 RunInference
features: (1) using a Dead Letter Queue and (2) adding pre/postprocessing mapping functions.
While these are distinct features, they have some interactions and similar properties so I'm
addressing them together in this doc.

Question 1: How to define DLQ and
pre/postprocessing functions
The first question we will address is how the user will define the behavior that they intend to
use. There are two places we can put each piece of functionality: in the model handler or in the
transform itself.

Option 1 - Everything in ModelHandler
Our first option is to stick all parameters into the ModelHandler:

mh = XYZModelHandler(<normal_args>, preprocess_fn=preprocess,

postprocess_fn=postprocess, use_dlq=True)

good, bad = pcoll | RunInference(mh)

This is the simplest extension to our existing user experience because all config can be
contained in the model handler itself and reduces the need for users to look in different locations
for information about changing the behavior of RunInference, but it comes with several
downsides:

First, the number of parameters returned by RunInference is now disconnected from the
transform itself in a non-obvious way. For example, despite being almost identical to the original
example, the following would be invalid:

mh = XYZModelHandler(<normal_args>, preprocess_fn=preprocess,

postprocess_fn=postprocess)

good, bad = RunInference(mh)

This is just because we changed the model handler. So any change to the model handler's
use_dlq parameter will require a corresponding change to the RunInference call itself.

In fact, the most common way of using RunInference with chaining:

return (pcoll

| beam.Map(<func>)

| RunInference(mh)

| beam.Map(<func>))

breaks if you introduce a dead letter queue. Any change to the DLQ parameter will require a
corresponding change to how we call RunInference, so it is odd to separate them entirely. It also
won't save users from needing to learn this Beam concept since they'll need to receive multiple
PCollections and handle their dead letter queue (store + reprocess) anyways.

Secondly, making pre and post processing functions a parameter of the ModelHandlers adds
significant complexity in how we define our types. Currently, we define RunInference to be a
transform that goes from an ExampleT to PredictionT, with those types defined by the Model
Handler.

class RunInference(beam.PTransform[beam.PCollection[ExampleT],

 beam.PCollection[PredictionT]]):

 def __init__(

 self,

 model_handler: ModelHandler[ExampleT, PredictionT, Any],

 ...

)

If we add custom preprocessing functions to the model handler itself, typing becomes much
more difficult and we likely won't be able to offer the same level of type safety that we offer
today. Since we can't change the ModelHandler contract, each ModelHandler will only be able
to expose 3 values - the example type, the prediction type, and the model type. At best, then,
the model handler would be able to expose an example type of Union[CurrentExampleT,
InputTypeToPreprocess]. Since the input type to the preprocess function can be any type,
this would need to be a generic type, and the typing is not sophisticated enough to infer the
actual underlying type of a subclass like this. So we would not be able to offer any input typing
guarantees.

In contrast, if we define the type on RunInference itself, we can easily infer the type information:

class RunInference(beam.PTransform[beam.PCollection[Union[ExampleT, PreT]],

 beam.PCollection[Union[PredictionT,

 PostT]]]):

 def __init__(

 self,

 model_handler: ModelHandler[ExampleT, PredictionT, Any],

 ...

 preprocess_fn: Optional[Callable[[PreT], ExampleT]] = None,

 postprocess_fn: Optional[Callable[[PredictionT], PostT]] = None):

So we are not able to make the same typing guarantees with this approach that we currently
provide. This means that users will not receive typing errors until runtime, and they will
potentially surface in unclear ways

Lastly, if we define these properties as part of the ModelHandlers instead of RunInference,
every new ModelHandler will have to implement support for them. While this can be done by
overriding a function defined by the base class, it introduces overhead for all authors and many
custom model handler authors will likely not implement this.

SubOption a - Add with_<pre/post>processing_fn as a function on
base.ModelHandler

Rather than defining our pre/postprocessing functions as parameters to the model handler, we
can add them as functions on our model handler:

mh =

XYZModelHandler(...).with_preprocess_fn(preprocess).with_postprocess_fn(postprocess

)

where these functions have signatures like:

ModelHandler[ExampleT, PredictionT, Any].with_preprocess_fn(Callable[[ExampleX],

ExampleT] -> ModelHandler[ExampleX, PredictionT, Any]

This allows us to maintain strong typing, and allows us to easily compose multiple
pre/postprocessing functions:

mh =

XYZModelHandler(...).with_preprocess_fn(pre1).with_preprocess_fn(pre2).with_preproc

ess_fn(pre3)

Option 2 - Everything in the RunInference transform
Our second option is to put all of our configuration in RunInference.

This has the disadvantage of requiring config in 2 places - the model handler and the transform.
At the same time, it moves the DLQ config to the same place that DLQ records must be handled
and allows us to use stronger typing. Additionally, introducing keyword parameters to

RunInference itself allows us to introduce new features to all ModelHandlers, bringing value to
custom Model handlers and allowing Beam developers to more easily scale.

Within this option, there are 2 possible approaches for handling the DLQ:

SubOption a - DLQ as transform parameter
First, we can add the DLQ as a transform parameter alongside the pre/post processing
functions.

good, bad = pcoll

 | RunInference(

 mh,

 preprocess_fn=mult_two_pre,

 postprocess_fn=mult_two_post,

 use_dlq=True

)

SubOption b - DLQ using with_exception_handling
Second, we can add the DLQ using with_exception_handling. This allows us to attach our
existing pattern for handling DLQs elsewhere in the Python SDK. It also provides an easy
mechanism for providing additional parameters, like use_subprocess.

good, bad = pcoll

 | RunInference(

 mh,

 preprocess_fn=mult_two_pre,

 postprocess_fn=mult_two_post

).with_exception_handling(use_subprocess=True)

Option 3 - Mix and Match
Our last option is that we could put pre/postprocessing in the Model Handler and the DLQ in
RunInference, or vice versa. This would look like either:

mh = XYZModelHandler(preprocess_fn=preprocess)

good, bad = pcoll

 | RunInference(

 mh,

 use_dlq=True

or:

mh = XYZModelHandler(use_dlq=True)

good, bad = pcoll

 | RunInference(

 mh,

 preprocess_fn=preprocess

)

This comes with all the pros and cons for each method mentioned above.

Decision
We will proceed with option 3 and mix and match suboption 1a for the preprocess function and
suboption 2b for the DLQ:

mh =

XYZModelHandler(...).with_preprocess_fn(pre1).with_preprocess_fn(pre2).with_preproc

ess_fn(pre3)

good, bad = pcoll

 | RunInference(

 mh

).with_exception_handling(use_subprocess=True)

This has the following advantages:
1) It keeps the DLQ near where its used
2) It allows us to maintain strong typing
3) It creates pattern that can be reused to easily scale support for custom model handlers and
our existing model handlers
4) It attaches to the existing DLQ pattern and easily allow passing in parameters like
use_subprocess
3) It allows for chaining of pre/postprocessing operations

It does come at the cost of requiring users to provide config in 2 places: the ModelHandler and
the transform itself.

Q2: How to handle DLQ responses with
pre/postprocessing
The second question we will address is how to handle RunInference instances with multiple
subtransforms. Specifically, if we have pre and/or post processing operations, we can represent
our DLQ as returning 2 PCollections no matter what:

good, bad = pcoll

 | RunInference(

 mh,

 preprocess_fn=mult_two_pre,

 postprocess_fn=mult_two_post

).with_exception_handling(use_subprocess=True)

returning 1 PCollection per operation:

good, bad_preprocess, bad_inference, bad_postprocess = pcoll

 | RunInference(

 mh,

 preprocess_fn=mult_two_pre,

 postprocess_fn=mult_two_post

).with_exception_handling(use_subprocess=True)

or returning 1 pcollection, and one object containing all the error pcollections as fields:

good, bad = pcoll

 | RunInference(

 mh,

 preprocess_fn=mult_two_pre,

 postprocess_fn=mult_two_post

).with_exception_handling(use_subprocess=True)

bad_preprocess = bad.failed_preprocessing

bad_inference = bad.failed_inferences

bad_postprocess = bad.failed_postprocessing

Returning just 2 PCollections has the advantage of being simpler, but doesn't provide as much
expressiveness as the first option.

Returning one PCollection per operation allows users to understand which transform the DLQ is
returning from so that they can act appropriately. For example, if an item fails during
preprocessing, the correct action may be to just feed it back into the pipeline. If an item fails
during postprocessing, the user likely doesn't want to feed it back into the pipeline as an
example.

Returning an object with member PCollections provides the same level of expressiveness, but
avoids exploding the number of parameters. It also gives us room to apply a similar pattern in
the future.

Because of its additional expressiveness, we will proceed with the third option:

main, other = pcoll

 | RunInference(

 mh,

 preprocess_fn=mult_two_pre,

 postprocess_fn=mult_two_post

).with_exception_handling(use_subprocess=True)

bad_preprocess = other.failed_preprocessing

bad_inference = other.failed_inferences

bad_postprocess = other.failed_postprocessing

Note: If with_exception_handling is not set RunInference will return a single pcoll as per existing
signature.

Future Work

In the future, we will extend with_exception_handling to accept an object that contains
configuration on where to write results (e.g. kafka, gcs, etc…) and will automatically write the
results as part of our pipeline.

We will also consider retrying individual records that fail as part of a batch in RunInference to
isolate the failures to a tighter set of examples.

	Pre/Post Processing and DLQ in RunInference
	Question 1: How to define DLQ and pre/postprocessing functions
	Option 1 - Everything in ModelHandler
	SubOption a - Add with_<pre/post>processing_fn as a function on base.ModelHandler

	Option 2 - Everything in the RunInference transform
	SubOption a - DLQ as transform parameter
	SubOption b - DLQ using with_exception_handling

	Option 3 - Mix and Match
	Decision

	Q2: How to handle DLQ responses with pre/postprocessing
	Future Work

