
Publicly shared

falken@, horo@, kenjibaheux@, kinuko@, shimazu@

April 6th 2018

Context
Adding a ServiceWorker doesn’t magically result in better performance.Web developers need to invest in

their service worker to get performance returns. For instance, manyweb developers of progressive web

apps are using their ServiceWorker to serve a shell while fetching fresh content. On the Chrome side, we

are working hard to improve the performance of ServiceWorkers to satisfy even themost performance

sensitive websites. Our plan for 2017 resulted inmassive improvements for ourmost demanding partners

(e.g cumulative improvements on the order of 20x) andwe also refined our understanding of speed

opportunities in our implementation. So, it’s time for a new roadmap!

Opportunities
Main Thread Contention in the Renderer
Main Thread Contention used to be a generic latency concern. But, because of the work we did in 2017with

respondWith and Fetch API, it is nowmainly a startup latency concern.

● Creating a “shadow page (hidden document)” is a fundamental architectural problem resulting in

extra latency.

IO Thread Contention and Throttling in the Browser
IO Thread Contention is a generic latency concernwith potential impact at startup and for every Fetch API

call.

● SW startup in the browser process goes throughmultiple thread-hops between UI/IO, which adds

100+ms overhead on slow devices.

● Resources loaded by SW are throttled by SafeBrowsing and ResourceScheduler in the browser

process, but this throttling is not always necessary.

Accelerating Script Execution
Script execution is a significant latency factor in the renderer process.We can reduce its impact by

aggressively caching V8 optimized code for the javascript resources that are associated with Service

Workers.

Roadmap
Project crbug Motivation Description ETA / Status

V8 full
Code
Caching

SW
scripts:
788619

Script execution cost Script execution is the heaviest task
in the renderer.We can reduce its
impact by eagerly and fully compile

M65: approved for
launch.

https://developers.google.com/web/updates/2015/11/app-shell
https://bugs.chromium.org/p/chromium/issues/detail?id=788619


for SW and
installed
scripts

Installed
scripts:
788621

scripts that are stored in Cache
Storage or otherwise associated
with a ServiceWorker.

Service
Worker
servicificat
ion

715640 Remove process
round-trips and
undesirable throttling
for every Fetch calls.

Re-architecturing SW code to let
pages directly talk to their SW.

Estimated gain: unclear on its own
(possibly 10s of ms per Fetch for
throttling removal), but this
unblocksmany other
fixes/optimizations.

Note: this is a major rewrite of
ServiceWorker andwill therefore
take time to complete.

2018Q2

P1 in 2018 (tasks
tracker)

Move
browser-si
de Service
Worker
code to UI
thread

824858
824840

Remove thread-hops
to avoid IO thread
contention during
startup.

And code health.

We can remove the thread-hops by
moving all the ServiceWorker code
in the browser process onto the UI
thread.

Estimated gain: 100+ms on
Android Go

2018Q3+

Dependency:
ServiceWorker
Servicification.

Needs hard data
from slow
windows/CrOS
devices.

Bypass/del
ay shadow
page
creation
for
installed
SW startup

820329
692909

Main thread latency
during startup

The start-up sequence of workers
relies on themain thread to create
and setup a shadow page. However,
themain thread tend to be busy
while loading a pagewhich results
in startup latencies.

Estimated gain: 100s of ms (cold
navigation).

StartWorkermessage latency
metric shows that wewait
750-1000ms for themessage at
95p and 10-30ms at median.

Design Doc

2018Q3+ ?

(Not yet started)

Mitigate
Shadow
Page
overhead
at startup

719100 Main thread latency
during startup

See above for context. There is
work done during the shadow page
setup that is unnecessary for
ServiceWorker (e.g. style-related
initialization).

2018Q2

https://bugs.chromium.org/p/chromium/issues/detail?id=788621
https://crbug.com/715640
https://goto.google.com/s13nsw-backlog
https://goto.google.com/s13nsw-backlog
https://crbug.com/824858
https://crbug.com/824840
https://bugs.chromium.org/p/chromium/issues/detail?id=820329
https://crbug.com/692909
https://uma.googleplex.com/p/chrome/timeline_v2/?sid=ddf34a8f3bb743cc60786d8ead25ecff
https://uma.googleplex.com/p/chrome/timeline_v2/?sid=ddf34a8f3bb743cc60786d8ead25ecff
https://docs.google.com/document/d/1N-WhvyzMVxb6pQQWVMP3f1a91Oqb13UQS69FGDFG8Zo/edit
https://crbug.com/719100


We could skip such unnecessary
work but the issue will be irrelevant
as we remove the shadow page
altogether.

Estimated gain: unknown?

Remove
Shadow
Page
(hidden
document)

538751 Main thread latency
during startup

See first item in this section for
context. For newworkers, we still
need to create a shadow page in the
current architecture.

2018Q4

Dependencies: 1.
Off main-thread
import scripts
(horo@)

2.Off main-thread
WebSocket
(nhiroki@)

Off
main-threa
d
importScri
pts

706331 Main thread latency
during startup and
unblocking shadow
page removal.

Fetch API calls are now done off the
main-thread, but importScripts
aren’t yet.

Estimated gain: unclear, but should
also unblock shadow page removal.

2018Q3
(horo@)

Avoid
SafeBrows
ing
throttling
for
installed
resources

817909 Unnecessary
throttling

Currently fetching resources
always goes through SafeBrowsing
throttling even if they come from
Cache Storage.

We already bypass this for installed
SW scripts, but not for other
resources. It might be reasonable to
do so.

Estimated gain: 10s~100s of ms per
request.

Android Go: may cost a process
start when the SB service isn’t
loaded.

(Not yet decided)

(Not yet started)

Dependency: SW
Servicification (high
complexity
otherwise)

Discussion with SB
team.

Skip SW
for certain
resources

Spec issue Fetch latency Provide the ability to skip SW for
resources that are known to never
be in the cache, e.g. videos.

Options:
- Fetch API flag
- HTML element attribute
- Static route (MVP: opt-out

routes at install)

TBC

https://crbug.com/538751
https://crbug.com/706331
https://crbug.com/706331
https://crbug.com/825740
https://crbug.com/825740
https://crbug.com/706331
https://crbug.com/817909
https://github.com/w3c/ServiceWorker/issues/1026




Archive

Roadmap 2017~2018Q1
Green: shipped

Yellow: on-going

Project crbug Motivation Description ETA / Status

Navigation
Preload

661071 Startup cost. Allow navigation and service
worker startup to run in parallel.

Estimated gains: on the order of a
network RTT.

M59: launched.
(origin trial inM58).

Mojo pipe
for
respondWi
th()

690795 Main thread latency. Allow streaming responses without
relying on themain thread.

Side-benefits:
The responses fromNavigation
Preloadwill no longer be blocked by
themain thread.
Increase the potential of theOff the
main thread Fetch project.

Estimated gains: 100s of ms.

M60: launched.

Mitigate
the impact
of
preconnec
t

727544 Startup cost. A busy IO thread can delay the
Service worker startup tasks.We
found out that pre-connections can
hog the IO thread for a long time.

Avoid having pre-connections block
ServiceWorker startup tasks.

Estimated gains: 100s of ms.

Cancelled: impact
would beminimal
with PlzNavigate
(shipping soon).

SW Script
Streaming

683037 Startup cost. Remove round-trips between the
Renderer and Browser processes
when starting up a service worker.

Side-benefit: the resource
scheduler will no longer throttle the
requests for ServiceWorker scripts.

Estimated gains: 10s of ms per
script.

M64

UMA
breakdown
and fixes to
Nav

Insights More UMAbreakdown.

Fixes to our navigation preload
UMAs.

M61.

https://www.chromestatus.com/features/5734842339688448
https://www.chromestatus.com/features/5734842339688448
https://bugs.chromium.org/p/chromium/issues/detail?id=661071
https://crbug.com/690795
https://bugs.chromium.org/p/chromium/issues/detail?id=727544
https://bugs.chromium.org/p/chromium/issues/detail?id=683037


Preload
UMA

Off the
main
thread
StartWork
er

692909 Startup cost (due to
main thread latency).

startWorker relies on the themain
thread to perform its tasks.
Unfortunately, themain thread
tend to be busy when awebsite
starts to load.

Move startWorker off themain
thread.

Estimated gains: 100s of ms per
cold navigation.

Design Doc

Proof of concept
CL.
ETA: late-2017.

Off the
main
thread
Fetch

443374 Main thread latency. Fetch operations issued from a
worker are handled by themain
thread. Unfortunately, themain
thread tend to be busy with other
competing tasks.

Move Fetch off themain thread.

Estimated gains: 100s of ms.

Enabled by default
inM62.
Monitoringmetrics.

Service
Worker
servicificat
ion

612285 Remove round-trips
between browser and
renderer. Directly
communicate with
SW.

Removemore round-trips between
browser and renderer processes.

Side-benefit: the resource
scheduler will no longer throttle
requests issued by a service worker.

Estimated gains: 10s of ms per
requests.

Note: this is a major rewrite of
ServiceWorker andwill therefore
take time to complete.

ETA early 2018.

Prototyping has
started.

Behind the
experimental flag:
late 2017.

Fast Back
navigation

Back navigation on
Chrome is negatively
impacted by Service
Worker.

Chrome doesn’t have a
back/forward cache. Our
back/forward navigations are done
by issuing a page loadwith a flag to
prefer cached resources.

This means that a ServiceWorker
may get involved on back/forward
navigations in Chrome.

Browsers with a back/forward
cache do not have this particular

Approach is still
TBD.

https://crbug.com/692909
https://docs.google.com/document/d/1N-WhvyzMVxb6pQQWVMP3f1a91Oqb13UQS69FGDFG8Zo/edit
https://codereview.chromium.org/2118243002
https://crbug.com/443374
https://crbug.com/612285


issue.


