ФИО	
Группа	
Отметка	
Лабораторная работа № 2	

Изучение изобарного процесса.

<u>Цель работы</u>: опытная проверка гакона Гей-Люссака.

<u>Оборудование и средства измерения:</u> стеклянная трубка, запаянная с одного конца, цилиндрический сосуд (слева), стакан с водой комнатной температуры (справа), пластилин, термометр, линейка, спиртовка(Компьютерные модели).

<u>Теоретическая часть:</u> Согласно закону Гей-Люссака, при постоянном давлении параметры V_1 и T_1 начального состояния газа данной массы и параметры V_2 и T_2 его конечного состояния связаны соотношением

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \ .$$

Исследуемым газом в выполняемой работе является воздух, находящийся внутри прозрачной стеклянной трубки. Поскольку внутренняя полость трубки имеет форму цилиндра и площадь S её поперечного сечения одинакова по всей длине трубки, то $V_1 = Sl_1$ и $V_2 = Sl_2$, где l_1 и l_2 — длины столба воздуха в трубке в начальном и конечном состояниях соответственно.

Следовательно,
$$\frac{Sl_1}{T_1} = \frac{Sl_2}{T_2}$$
.

или
$$\frac{T_2}{T_1} = \frac{l_1}{l_2}.$$

При выполнении работы проверяют справедливость этого равенства.

Термометр в исходном состоянии показывает температуру окружающего воздуха. Приборы используются по очереди и после применения должны возвращаться в исходное положение, обозначенное пунктиром.

Ход Работы

- 1. оборудование и средства измерения в начальное состояние.
- 2. Поместите термометр в цилиндрический сосуд для измерения температуры воды t_1 .
- 3. Подогрейте цилиндрический сосуд с помощью спиртовки, переместив спиртовку под цилиндрический сосуд, а затем верните спиртовку на место. Температура воды зависит от времени нагревания.
- 4. результаты измерения температуры воды t_1 в таблицу. Затем верните термометр на место.
- 5. Измерьте с помощью линейки длину l_1 стеклянной трубки. результаты измерения в таблицу. Затем верните линейку на место.
- 6. Поместите стеклянную трубку, открытым концом вверх, в цилиндрический сосуд с горячей водой.
- 7. Закройте пластилином открытый конец трубки.
- 8. Выньте трубку из сосуда с горячей водой и замазанный конец в стакан с водой комнатной температуры.
- 9. Снимите под водой пластилин. Подождите, пока воздух в трубке охладиться.
- 10. За трубку и погрузите ее в стакан так, чтобы уровни воды в трубке и стакане выровнялись.
- 11. Измерьте длину l_2 воздушного столба в трубке. результаты измерения в таблицу.

- 12.Измерьте температуру t_2 окружающего воздуха. результаты измерения в таблицу.
- 13. Вычислите значения температуры T_1 и T_2 в градусах Кельвина и занесите их в таблицу.
- 14. Расчитайте погрешности, если: $\Delta_{\rm u}l$ абсолютная инструментальная погрешность линейки, 1 мм ; $\Delta_{\rm o}l$ абсолютная погрешность отсчета расстояния, 0.5 мм, $\Delta_{\rm u}T$ абсолютная инструментальная погрешность термометра, 1 К $\Delta_{\rm o}T$ абсолютная погрешность отсчета температуры, 0.5 К

 Δl - максимальная абсолютная погрешность измерения расстояния, $\Delta_{\rm u} l + \Delta_{\rm o} l \ \Delta T$ - максимальная абсолютная погрешность измерения температуры. $\Delta_{\rm u} T + \Delta_{\rm o} T$

Вычислите значения температуры T_1 и T_2 в градусах Кельвина и занесите их в таблицу.

15.Вычислите отношения $\frac{l_1}{l_2}$. и $\frac{T_2}{T_1}$, относительные (ε_l и ε_T) и абсолютные (Δ_l и Δ_T) погрешности измерений этих отношений по формулам:

$$\varepsilon_{l} = \frac{\Delta l}{l_{1}} + \frac{\Delta l}{l_{2}},$$

$$\varepsilon_{T} = \frac{\Delta T}{T_{1}} + \frac{\Delta T}{T_{2}}$$

16. Сравните отношения $\frac{l_1}{l_2}$. и $\frac{T_2}{T_1}$.

Сделайте вывод о справедливости закона Гей-Люссака.

Таблица данных

Измерено			Расчитано								
l_1 ,M	l_1 ,M	$t_{1,^{\circ}\mathrm{C}}$	$t_{2^{\circ}\! ext{C}}$	T ₁ ,K	Т ₂ ,К	$\frac{l_1}{l_2}$.	$\frac{T_2}{T_1}$	Δl ,M	ΔТ,К	$\epsilon_{\ell},\%$	ε _T ,%

1.Перевод единиц измерения				
$l_1 =$	l_2 =			
2.Расчетные данные				
$T_1 =$	$T_2=$			
$\Delta l =$				
ΔT =				
$arepsilon_\ell =$				

$\epsilon_{\mathrm{T}} =$			
$\frac{l_1}{l_2}$ =			
$\frac{T_2}{T_1}$ =			
Вывод:			