#VersusVirus Hackathon
Solution Proposal to Challenge #80:

One platform for communication for

teachers

Table of Contents

Table of Contents
Overview

Team

Project description

The way to the solution
Existing solutions
Use cases
Our solution
Veep Application Architecture
Overview
Specific Application Parts
User Interfaces
Backend Systems and Data Storage
External Services
Cross-SCS Concerns
Intra-SCS References/Links
Security
Vision
Challenges

N N (o)) 92} w N

11
14
14
14
16
16
16
16
17
17
17

17
17

Overview

Why:

What:

Who:

With schools closed due to the spread of the COVID-19 virus, teaching
becomes challenging. Teachers and educators are using video conferencing
and e-learning tools to reach out to the students, but many of these platforms
are not optimal to fulfill all the functions needed or are over-complicated.
Functions are not intuitive, therefore there is the need for a simple single
platform for students and teachers to communicate and interact in a practical

and inclusive manner.

Creating a simple, intuitive app-based platform where the interactions
between students, teachers, and parents can be performed at the same place
for the facilitation of education. Video classes with a chat feature as well as
homework are provided on the platform.

Data safety and privacy are of high priority for the platform. In this sense, the
vision is that the data produced by services such as the video class or
file-sharing will not be owned or used by any third party outside of

Switzerland or a big corporation.

The end-users of this platform will be teachers, students, and parents,
especially for the younger students. With a good educational platform the
community at large benefits from it as it promotes information flow and
provides better teaching. The key drivers needed to carry the project through
are teachers for valuable inputs of the problems, needs and usability, students
as end-user input, software developers (back-end and front-end), graphic
designers for user interfaces, cybersecurity experts and lawyers, marketing
and business experts. Key stakeholders for this project would be the

government and most of all cantons. Cantons in Switzerland benefit from the

How:

freedom to choose how best to organize their education system. With the
financial support of cantons the platform would be proposed to school

institutions where teachers and students could interact in an innovative way.

With first-hand input from end-users a prototype/wireframe of how the
platform would look like and the functions it will have can be made, which
then can be demonstrated to end-users for reiteration and optimization.
Synchronously, software developers and legal/safety experts need to be
consulted on what is possible and reasonable to do. With joint efforts the
educational platform can come into realization. For funding of the project it
will rely on governmental/canton and educational system support, with
possible private support from either individuals or funds interested in
supporting a project beneficial for the community. For future funding, the
platform could also be sold or introduced outside Switzerland, and implement
the system of yearly subscriptions to existing users (first year free). The
platform will need to be maintained for the best user experience by a technical

team.

Team

We are a team of 9 highly motivated people, coming from different backgrounds, hoping our
skills and ideas may bring solutions to some of the arising challenges that are occurring due

to the current pandemic situation of the COVID-19 virus. The Team consists of:

e Eyrun Halla Haraldsdéttir - Biomedical Engineer - Allrounder

e Thomas Ziegler - Corporate Communications - coordination and graphics

e Roman Battig - Application Engineer- Wireframes

e Renato Kilin - Elementary School Teacher - Use cases and first-hand input

e Luciano Rod - Idea inputs

e David Caspar - Back End Developer/Software Architect - Architecture design

e John L Diaz - Front End Developer - Front End development

e Andrea Ferrazzo - Economics and Management Student - Allrounder

e Ali Nasserzadeh - Lead Engineer, Full Stack development - Initial idea support and

front end development

Project description

In order to prevent and diminish the spread of the current pandemic, governments and
officials have implemented various measures to prevent the assembly of larger groups of
people, one of them being locking down schools. As education is one of the fundamentals of
society, it is of great importance that it can be continued in a remote manner. With that,
new challenges emanate, how can teaching still continue in a reasonable way, especially for
younger children? Luckily with all the technology that we have access to these days, remote
communication is very accessible. Nevertheless, teachers and students/parents alike
struggle with adapting to the new format and the existing tools and platform for remote
teaching are not able to meet some of the needs in a practical manner. First of all,
communication out of one single platform is not feasible, calls, notes, and tasks are
disconnected. Secondly, many platforms are overcomplicated, there are different tools for
the same problem with the same stakeholder, which causes confusion and important
notifications/ information to get lost or miscommunicated. Thirdly, giving out/ receiving
homework gets overcomplicated, having to download the document - print it out- scan it
in- upload it again, causing substantially more time for the task and is unfeasible for
students that don’t have access to all the resources needed. Finally, the student/ teacher
interaction during live classes is challenging, as the normal raise hand and engaging in
educative and creative discussions is difficult over live video feeds, students might be
discouraged and unmotivated to participate and even in these sessions the parent's
involvement might be excessive, causing the child to rely too much on them and not

entering the discussion on the basis of its own integrity.

Noticeable, there is a dire need for a more practical solution, one simple and
user-friendly platform for communication with peers, students, and parents. Students
should be able to resolve a problem, upload their work and teacher should be able to

correct mistake directly on this upload

The way to the solution

Existing solutions

When looking at some of the already existing platforms for video conferencing, e-learning
and document sharing i.e., there are many good solutions that can be used as inspiration or
as an add-on for the solution needed. Following is a list of some of the more favored

solution with a short description and notes on pros and cons for that solution as an

educational platform:

Pros

Cons

Platform Description
Zoom Easy to use video
conferencing platform. It
can integrate with other
educational platforms.
Microsoft Teams Advanced video

conferencing tool with
many team collaboration
tools.

Simple interface
Screen Sharing is
easy

Raise hand option
Good audio and
video quality

Easy to create
subgroups

Document and
content sharing is

easy
Platform that
holds together all
documents

Not optimal for
document or
content sharing
Limit to 40 min
calls with a free
plan

Many add ons, not
very intuitive,
longer learning
curve.

Need to have an
MS account
Notification
control needs
improvement

Slack

Second life

Khan Academy

Brilliant.org

Padlet.com

Google Hangouts

Team collaboration
platform for simplifying
communications.

Virtual education
solution using 3-D
virtual world as an
platform

A non-profit
organization, offering
free online content for
students.

El-earning platform
focused on math, science,
and engineering.

An application that is
easy to use to create an
online bulletin board to
display information on
any topic

Communication platform
with video call
capabilities and
messaging.

Separate channels
Easy to use
Easy to share files

Interactive

Gives the student
a sense of
presence

Free and no need
to download an
app

High quality and
well-explained
content

Interactive and
visual examples.
Alternative
approach to solve
complex
problems.

Easy to use
Interactive

Great for sharing
content

Easy to use

For free

Good for Dbasic
calls used with
google docs

Not a video
conference tool
Expensive paid
plan

Major learning
curve

High speed
internet needed
Privacy issues

Not an interactive
tool

Limited by
language

Not an interactive
tool

Limited by
language

Not free

Limited Padlets
for the free
version, which is

small.
Not for video
conferencing

Need a google
account

Not optimal for
document sharing

+ Good for No live interaction
Moodle An open-source Learning providing course or video
Management system. content conferencing
Used widely by + Useful for Major learning
educational institutions. uploading curve when using
assignment for the first time
+ Customizable Outdated
interface
+ Fun and No video
Kahoot A game-based learning interactive conferencing tool
platform. Focused on + User friendly and Online reports
making it easy to create, intuitive limited in free
share and play learning + Scoring based on version
games. how fast you No uploading
answer function
Limited types of
questions
Use cases

In order to meet the problems that teachers/ students are experiencing with the current

solutions with a systematic manner, a list of use cases based on first -hand experience was

created:
Use Case User Story Use Case 1 Use Case 2 Use Case 3 Use Case 4 | Use Case 5
LPO1 Login Login mit | Passwort Info
Email vergessen
(Beispiel)
LP02 SuS/LP Manuell Excel / | Info
erfassen Schul-Export
LP03 Klasse Bulk (im | Einzelne Info
verkniipfen Verband) Mutation
LP04 siehe LP03

LPO5

LP06

LP07

LP08

LP019

LP09

LP10

LP11

LP12

LP13

LP14

Individ. Links

**see LP05)

Schulbeginn

**See LP07

Document
Push

SuS see LP

Supervising

see LP10

Peer-View

React to Hand

raise

React to
Question

Generieren

Signal "Starts
soon”

Send files to
class

Videostream
of LP

Chat-Roulett
e to see SuS

Unmute

Unblock
Peer-View

Alert
"Question"

Share
SuS-Vid on
Screen

Mail
Individ-PDFs

Start
Live-Stream

Send files to
Individ.

Screenshare

View of spec.
SuS

Breakout
room for
Groups

List of all
Hand raise

Private
Question
(Mini-Sessio
n - all Mute
for other
SuS)

Save individ.
PDFs

View of
specific SuS
w/ Voice

Unmute SuS
(Default
Mute)

Save
Class-PDF

Info

LP15

LP16

LP17

LP18

LP19

LP20

SuUSso1

SuUso02

SUso03

SUS04

Poll
Unterstanding

Poll Binary
(y/n)

Lesson End

After Lesson

see above

Doc-Cloud

individ. Link

1st SUS Login

Out-of-Class

In-Class

Start Poll
(Understand
1-6)

Start Poll
(y/n)

Signal
"Lesson End"

Timestamps
f/ Highlights

TBD

Erhalt per
Email

WALKTHROU
GH
*ANIMATED-
MASCOT*

See
Timetable
(St.
Soon/end)

Raise Hand

See
Summary
Responds*

See
Summary
Responds*

Export
Highlights
(mp4)

TBD

Login

Download
Resources

Drill-Down
to individual

Drill-Down
to individual

Export
Highlights
Doc-Templat
e

BOOKMARK-
TUTORIAL?

*Share
screen to
show Class

*Share
screen to
show Class

Export
other Meta
Data

Our solution: Veep

General Application Design

The following image shows the main screen of our application as seen by teachers. For
students, the screen looks similar, but the number and kind of displayed components/tiles
might vary. From this screen, users can access all the various application parts that are

bundled into Veep.

As indicated by this image, we foresee that Veep will at least feature the following

components:

- aschedule showing for teachers and students when they attend which class;

- a classroom mini-application allowing students and teachers to interact with each
other by video conference or by text messages;

- a document store allowing teachers and students not only to share learning material
but also to hand in and return assignments;

- atodo list showing current tasks; and

- for teachers a configuration section where they can set up classes and learning
materials, using an easy and intuitive drag and drop system with predefined
modules such as video podcasts, discussion panels, quizzes, etc. The user interface

should have the look and feel of a movie editor.

A Web Page

<:l C> X Q { hitps://veep.ch

Class Room

= Menu Home » ...

Profile

* On-Offline Status

KPI "grades”

Help ?
Log Out

Documents

Schedule

Veep Application Architecture

The general architectural style of Veep is the so-called self-contained systems (SCS) style.

While discussing the system'’s functionality, we noticed that most application components
like the video chat or the document store are very independent of each other and actually
form complete web applications on their own. For instance, the component to manage
documents is valuable to students and teachers without using any of the other components

like the video chat or the schedule. The same can be said of all the other main components.

Thus, we arrive at an overall system architecture that looks as follows:

5
Internal
Data
Storage
External
5

Documents
Documents Ul Backend J

Classroom SCS

Classroom W ’7
[Classroom Ul }»[Backend J

Documents SCS
_________ | Authentication
; Provider |—

Internal
Data
Storage

Main
Application
ul

Services

Internal
Data
W Storage
[Schedule Ul }»[Schedule External

Backend J j Services

External
Services

Schedule SCS

nomon

Configuration SCS

Configuration || Configuration Internal
ul Backend Data
Storage

https://scs-architecture.org/index.html

Each application component forms one self-contained system, providing the user interface

as well as the related application logic, data storage and integrations with external services.

In addition to these self-contained systems, there are things like security, user
authentication or regular backups that concern all SCS. For these matters, dedicated
services should be used as indicated in the above diagram by the Authentication Provider

service.

The whole application is held together by the main Ul component, whose responsibilities

are to make sure that

- each user is authenticated via an authentication provider (although the UI does not
know the details of the authentication mechanism and should be involved as little as
possible into this matter), that

- each user (students, teachers) sees the main components of the application and that

- each reference pointing to another component/SCS is resolved correctly and
transparently (but again, the UI does not know the technical details and should be

involved as little as possible)

Specific Application Parts

User Interfaces

As the previous section describes, all SCS feature their own user interfaces, which can thus
be highly optimized, especially in terms of user-friendliness. Each SCS is free in terms of
front-end technologies it uses given that the resulting UI fits into the overall user
experience. The main application Ul will then combine these different components into a

user-friendly whole.

Backend Systems and Data Storage

As indicated by the architecture diagram above, each SCS has its dedicated backend and
data storage. Each backend exposes an API suitable for its front-end, and the data storage is
tailored towards the needs of its SCS. If an SCS needs to communicate with another one, it
happens by calling an API designed specifically for this purpose. No SCS is allowed to call

other services than this API or access the data store of another SCS directly.

External Services

If feasible, SCS may use external services, e.g. for data storage, data processing and the like.
[t is up to the SCS to decide which external services it uses as long as these external services

fulfill general requirements imposed by the whole platform.

Cross-SCS Concerns

So far, we identified the following cross-SCS concerns, and there are likely others which we

would need to identify at a later stage.

Intra-SCS References/Links

One crucial aspect of Veep is to be able to reference SCS-specific artifacts like documents,
messages, etc. from other SCS. For instance, it should be possible to reference documents
containing homework assignments from the schedule. In order to achieve this, there needs
to be an overall mechanism to interpret and react to references/”links”, and each SCS must
be able to understand and handle users clicking on links.

One way to achieve this is to have a common convention about how links/references look
like, e.g. a specific URN format. In addition, it might be necessary for the main user interface
to detect when a link has been clicked and to update certain application components as

their interface state has changed.

Security

In an application like Veep, it is crucial to protect user data like assignment grades and the
like. As indicated by the architecture diagram, there should be a strong, reliable mechanism
to authenticate students and teachers. How such a mechanism could look lies beyond the
scope of this overview, but it is clear right from the start that such a mechanism is

necessary to fully unleash the potential of the Veep platform.

Vision

With a fully developed, easy to use educational platform, remote education will become
more accessible. It can be used for various stages of education and even after a lock-down
has been alleviated to facilitate remote teaching. Furthermore it will not only be restricted

to Switzerland but as a worldwide used application.

Challenges

We have developed a strong concept supported by application architecture and wireframes.
There is potential for a future application. Data security and legal conditions have to be
analyzed further. Develop integrated video chat and file storage independent from the APIs
of big corporations. Develop further the front-end in order to provide the best user
experience tailored for the needs of children (fun and active learning) and teachers
(intuitive and quick to use) while keeping in mind the simplicity of the platform. Finally, the
project has to be presented to the Swiss Government and Cantons in order to receive the
necessary funds to continue to develop the project. Crowdfunding could also be a viable

solution.

	#VersusVirus Hackathon
	Solution Proposal to Challenge #80:
	One platform for communication for teachers
	Table of Contents
	 Overview
	Team
	
	Project description
	The way to the solution
	Existing solutions
	Use cases
	Our solution: Veep
	General Application Design
	Veep Application Architecture
	Specific Application Parts
	User Interfaces
	Backend Systems and Data Storage
	External Services

	Cross-SCS Concerns
	Intra-SCS References/Links
	Security

	Vision
	Challenges

