
Support Symlink Runfiles Tree on Windows
Author: pcloudy@google.com

This is a public document

TL;DR: Bazel now supports symlink runfiles tree on Windows with
--experimental_enable_runfiles flag. It requires admin right or enabling developer mode
on Windows 10 Creator Update (1703) or later. Be aware that it might slow down your build if
your targets have lots of runfiles, because creating symlink is slow on Windows. This feature is
available with Bazel built from HEAD and will be released in 0.18.0.

Motivation
A binary’s runfiles are files needed during runtime. Bazel creates a runfiles directory next to the
binary, which contains a symlink tree of its runfiles. When binaries are running under the runfiles
directory, they have access to their runfiles by relative path. On Windows, the symlink runfiles
tree is disabled because creating symlink is not allowed by default. This causes the following
problems:

●​ Binaries cannot access their runfiles by relative path. To solve this, we introduced Bazel
Runfiles Libraries. It provides libraries for Python, Java, C++ to map a relative runfile
path to its actual absolute path.

●​ Python binary cannot be built as a collection of python source files under runfiles
directory. We had to build a self-extracting python zip file in order to run on Windows.
See more details at Build Python on Windows.

However, both solutions are not perfect for their problem.

The Runfiles Libraries require user to introduce Bazel specific code in their program. This is
problematic when your program depends on a third party module, which has no knowledge
about Bazel Runfiles Libraries and still requires a relative path for the data file. (See an issue
from Angular, #5926) Moreover, for languages that do not have official runfiles libraries, rule
authors have to write their own runfiles library. If any of the rules you depend on doesn’t support
runfiles library, your whole project will have reduced functionality.

Building python binary as a self-extracting zip file generally works. But it requires compressing
all runfiles during build time and extracting them during each runtime. When the python binary
depends on large size data files or C++ extensions (TensorFlow), the performance regression is
significant, especially for running python tests.

Fortunately, Microsoft still leaves us a way to create symlink on Windows. As requested by our
user (#5807), we should support symlink runfiles tree on Windows when it is possible.

mailto:pcloudy@google.com
https://docs.google.com/document/d/e/2PACX-1vSDIrFnFvEYhKsCMdGdD40wZRBX3m3aZ5HhVj4CtHPmiXKDCxioTUbYsDydjKtFDAzER5eg7OjJWs3V/pub
https://docs.google.com/document/d/e/2PACX-1vSDIrFnFvEYhKsCMdGdD40wZRBX3m3aZ5HhVj4CtHPmiXKDCxioTUbYsDydjKtFDAzER5eg7OjJWs3V/pub
https://bazel.build/designs/2016/09/05/build-python-on-windows.html
https://github.com/bazelbuild/bazel/issues/5926
https://github.com/bazelbuild/bazel/issues/5807

Symlink on Windows
Creating symlink on Windows is allowed if any of the two requirements are fulfilled:

●​ The program is running with elevated privileges (administrator rights)
●​ The system version is Windows 10 Creators Update (1703) or later and developer mode

is enabled.
For more history about Windows symlink, read this blog post.

Like Unix, symlink can be created and deleted even when the target is in use. And it can even
point to a path that doesn’t exist (dangling symlink).
Unlike Unix, Windows distinguishes file symlink from directory symlink. You have to specify the
symlink type during the creation and use DeleteFile or RemoveDirectory API to delete them
respectively.

Performance
Compared to Linux, symlink operation is much slower on Windows.
A benchmark: https://github.com/meteorcloudy/my_tests/tree/master/symlink_test

In this benchmark, creating and deleting symlink directly use Win32 API (CreateSymbolicLinkW
and DeleteFileW/RemoveDirectoryW). There’s also a Win32 API GetFinalPathNameByHandleW
for resolving symlink, but it is very slow, therefore we implemented symlink resolving by reading
symlink reparse point.

The time consumed by symlink operations on 10000 files

 System Info Create file symlink Resolve file symlink Delete file symlink

Windows
workstation

Windows 10,
12 cores,
SSD

12.04s 1.16s 0.51s

GCE
Windows
worker

Windows
Server 2016,
32 cores,
HDD

3.80s 1.15s 0.77s

Windows
laptop

Windows 10,
8 cores,
SSD

4.07s 1.48s 0.78s

Linux Debian 4.9,
12 cores,
SSD

0.10s 0.030s 0.071s

https://blogs.windows.com/buildingapps/2016/12/02/symlinks-windows-10/#0ZLEcEspZuZhXRvS.97
https://github.com/meteorcloudy/my_tests/tree/master/symlink_test
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-createsymboliclinkw
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-deletefilew
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-removedirectoryw
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-getfinalpathnamebyhandlew
https://msdn.microsoft.com/en-us/library/cc232006.aspx

A few things observed from the result:

●​ Symlink creating time varies on different Windows machines, it’s about 40 ~ 120 times
longer than Linux.

●​ Resolving symlink is almost the same time on Windows, it’s much faster than creating
symlink but still about 40 times slower than Linux.

●​ Deleting symlink is much faster than creating symlink on Windows.

Implement build-runfiles tool
Bazel uses a native C++ binary (build-runfiles) to create symlink runfiles tree. On Windows, the
build runfiles tool consists of following parts:

Check Symlink Creation
The build-runfiles tool first tries to create a dummy symlink with CreateSymbolicLinkW API.
SYMBOLIC_LINK_FLAG_ALLOW_UNPRIVILEGED_CREATE flag will be used if it’s possible to create
symlink without admin privilege. If it’s not possible to create symlink, the tool prints out an error
message asking for symlink privilege:

CreateSymbolicLinkW failed:

Bazel needs to create symlink for building runfiles tree.

Creating symlink on Windows requires either of the following:

 1. Program is running with elevated privileges (Admin rights).

 2. The system version is Windows 10 Creators Update (1703) or later and

developer mode is enabled.

Read Manifest File
The build-runfiles tool reads a given manifest file and stores every runfile entry (runfile path ->
absolute path) in a map.

Scan and Prune Runfiles Tree
It’s very possible there’s already an existing runfiles tree from previous build. We walk the
runfiles directory recursively, check every existing file and directory. We preserve a symlink if it
meets all the following requirements:

●​ It exists in the runfiles map
●​ It’s already pointing to the correct target
●​ the target type matches the symlink type (file vs directory)

At the same time, we remove the corresponding runfile entry from the runfiles map to avoid
recreating it. We then delete all other files and empty directories.

https://github.com/bazelbuild/bazel/blob/master/src/main/tools/BUILD#L46

Create Runfiles Tree
The build-runfiles tool creates symlinks for all remaining entries in the runfiles map. It checks the
target type first to tell which symlink type it should create (file vs directory). Note that, there
might be entries pointing to an empty target (eg. __init__.py -> “”). In this case, we just create an
empty file at its runfile path.

Summary
With --experimental_enable_runfiles flag, Bazel now supports building symlink runfiles
tree on Windows. Before you use this feature, you should consider its pros and cons.

Pros
●​ Programs can access data files (or other runfiles) in the same way as Linux. No special

consideration needed for Windows, this will help porting Bazel rules to Windows.
●​ Python binary doesn’t have to be built as a zip file.

Cons
●​ Requires admin right or developer mode on Windows 10 Creator Update (1703) or later

to be enabled.
●​ Creating symlink is very slow on Windows. This is a performance issue when targets

have a large number of runfiles. But this issue can be eased during rebuild, because
○​ If runfiles doesn’t change, the whole runfiles action will be cached by Bazel
○​ If runfiles changes, build-runfiles tool will only create symlinks for new runfiles,

which is usually a small number.

	Support Symlink Runfiles Tree on Windows
	Motivation
	Symlink on Windows
	Performance
	Implement build-runfiles tool
	Check Symlink Creation
	Read Manifest File
	Scan and Prune Runfiles Tree
	Create Runfiles Tree

	Summary
	Pros
	Cons

