Automobile Data Analysis

Scenario

You are a data analyst working with a used car dealership startup venture. The investors sent a survey to prospective customers and found that the most important detail customers are looking for in a car is high gas mileage. Your task is to identify which car types have the highest gas mileage.

Ask/Business Task

Identify which types of cars have the highest gas mileage.

Prepare/Understanding the Dataset

This is data from an external source that contains historical sales data on car prices and their features. Contains the following columns:

- make
- fuel_type
- number_of_doors
- body_style
- drive_wheels
- engine_location
- wheel_base
- length
- width
- height
- curb_weight
- engine type
- num_of_cylinders
- engine_size
- fuel_system
- compression_ration
- horse_power
- city_mpg
- highway_mpg
- price

Data's description

Process

Clean the Data

1. Fill in Missing Data

To begin, I checked **each** column for NULL values. I ran the following query multiple times, replacing the WHERE clause with the specific column.

```
SELECT *
```

FROM shrivastava.automobile_data.automobile

```
WHERE num_of_doors IS NULL
```

Results

Row	make	fuel_type	num_of_doors	body_style	drive_wheels	engine_location
1	dodge	gas	null	sedan	fwd	front
2	mazda	diesel	null	sedan	fwd	front

When checking the num_of_doors column, it returned the following NULL results. In this scenario, it instructed me to fill in these missing values with the value "four". To do this I ran the following queries:

Update Table

UPDATE

```
shrivastava.automobile_data.automobile
```

```
SET
```

```
num_of_doors = "four"
WHERE
make = "dodge"
AND fuel_type = "gas"
AND body_style = "sedan";

UPDATE
shrivastava.automobile_data.automobile
SET
num_of_doors = "four"
WHERE
make = "mazda"
AND fuel_type = "diesel"
```

AND body_style = "sedan";

To double check that the table was updated, I then ran this query again.

```
SELECT *
FROM shrivastava.automobile_data.automobile
WHERE num_of_doors IS NULL
```

Results

There is no data to display.

2. Check for Potential Errors

It is important when cleaning data to check for potential errors. I used the SELECT DISTINCT clause to see what values exist in each column.

EX:

SELECT

DISTINCT num_of_cylinders

FROM shrivastava.automobile_data.automobile

RESULT

Row	num_of_cylinders
1	four
2	six
3	five
4	three
5	twelve
6	two
7	tow
8	eight

I found that in Row 7, "two" is misspelled. To fix this error I ran the following query:

UPDATE

shrivastava.automobile_data.automobile

```
num_of_cylinders = "two"
WHERE
num_of_cylinders = "tow";
```

To double check that the above query was successful, I ran the above SELECT DISTINCT query and found that the update was successful.

When using the SELECT DISTINCT query for drive_wheels I also noticed the following error:

SELECT

DISTINCT drive_wheels

FROM

Shrivastava.automobile_data.automobile

Row	drive_wheels
1	rwd
2	fwd
3	4wd
4	4wd

4wd is listed as two distinct rows meaning there may be extra whitespace in one of the iterations. To see if this is the case I used the LENGTH statement to determine the length of each string:

SELECT

```
DISTINCT drive_wheels,
LENGTH(drive_wheels) AS string_length
FROM
    shrivastava.automobile_data.automobile
```

I saw that some 4wd were showing 4 characters instead of 3, so I used the TRIM function to remove the extra space:

UPDATE

```
shrivastava.automobile_data.automobile
SET
    drive_wheels = TRIM(drive_wheels)
WHERE TRUE;
```

I then double checked the results using the SELECT DISTINCT query from above.

I then used the <u>data description</u> to check that each column had a value in the correct range using the MIN and MAX function. For example the compression_ratio column values should be between 7 and 23, but when I ran the query below I found that the maximum was 70.

```
SELECT
```

```
MIN(compression_ratio) AS min_compression_ratio,
MAX(compression_ratio) AS max_compression_ratio
FROM
shrivastava.automobile_data.automobile
```

I then checked how many rows contained a maximum of compression_ratio of 70 using the following query and found only one row contained this error.

```
SELECT
```

```
COUNT(*) AS num_of_rows_to_delete
FROM
    shrivastava.automobile_data.automobile
WHERE
    compression_ratio = 70
```

In a real-life scenario I would check what the correct compression_ratio was for this car and update the table. For this example though, since I am unable to check the correct number, I updated the compression_ratio to 7.0 as that was likely the correct compression_ratio. To do this I wrote the following query:

UPDATE

```
shrivastava.automobile_data.automobile
SET
  compression_ratio = 7.0
WHERE
  compression_ratio = 70.0
```

I then double checked my data using the MAX query above and found that the rest of the data fell within the correct range.

Analysis

Identify the cars with the Highest Gas Mileage for each body style

From my preparation I know that the five body_styles are: hardtop, wagon, sedan, hatchback, convertible. In order to identify which cars of the same body type and cylinders have the highest gas mileage I ran the following query for each body_style:

SELECT make, body_style, num_of_cylinders, city_mpg, highway_mpg
FROM

shrivastava.automobile_data.automobile

WHERE body_style="hardtop"

ORDER BY city_mpg DESC, highway_mpg DESC

Results

Row	make	body_style	num_of_cylinders	city_mpg	highway_mpg
1	nissan	hardtop	four	31	37
2	toyota	hardtop	four	24	30
3	toyota	hardtop	four	24	30
4	toyota	hardtop	four	24	30
5	mercedes-benz	hardtop	five	22	25
6	porsche	hardtop	six	17	25
7	porsche	hardtop	six	17	25
8	mercedes-benz	hardtop	eight	14	16

WHERE body_style="wagon"

Results

1	make	body_style	num_of_cylin	city_mpg	highway_mpg
2	nissan	wagon	four	31	37
3	nissan	wagon	four	31	37
4	toyota	wagon	four	31	37
5	honda	wagon	four	30	34
6	subaru	wagon	four	28	32
7	toyota	wagon	four	27	32
8	toyota	wagon	four	27	32
9	subaru	wagon	four	25	31
10	volkswagen	wagon	four	25	31
11	peugot	wagon	four	25	25
12	peugot	wagon	four	25	25
13	dodge	wagon	four	24	30
14	plymouth	wagon	four	24	30
15	volvo	wagon	four	24	28
16	subaru	wagon	four	23	29
17	volvo	wagon	four	23	28
18	subaru	wagon	four	23	23
19	mercedes-be	wagon	five	22	25
20	audi	wagon	five	19	25

WHERE body_style="sedan"

Results

1	make	body_style	num_of_cyli	city_mpg	highway_mpg
2	nissan	sedan	four	45	50
3	toyota	sedan	four	38	47
4	chevrolet	sedan	four	38	43
5	isuzu	sedan	four	38	43
6	isuzu	sedan	four	38	43
7	volkswagen	sedan	four	37	46
8	volkswagen	sedan	four	37	46
9	volkswagen	sedan	four	37	42
10	mazda	sedan	four	36	42
11	toyota	sedan	four	34	36
12	volkswagen	sedan	four	33	38
13	subaru	sedan	four	32	37
14	mazda	sedan	four	31	39
15	dodge	sedan	four	31	38
16	dodge	sedan	four	31	38
17	mazda	sedan	four	31	38
18	mazda	sedan	four	31	38
19	plymouth	sedan	four	31	38
20	plymouth	sedan	four	31	38

WHERE body_style="hatchback"

Results

2	honda	hatchback			highway_mpg
3		Hatehiback	four	49	54
	chevrolet	hatchback	three	47	53
4	toyota	hatchback	four	38	47
5	chevrolet	hatchback	four	38	43
6	honda	hatchback	four	38	42
7	dodge	hatchback	four	37	41
8	mitsubishi	hatchback	four	37	41
9	plymouth	hatchback	four	37	41
10	toyota	hatchback	four	35	39
11	dodge	hatchback	four	31	38
12	dodge	hatchback	four	31	38
13	honda	hatchback	four	31	38
14	mazda	hatchback	four	31	38
15	mazda	hatchback	four	31	38
16	mitsubishi	hatchback	four	31	38
17	mitsubishi	hatchback	four	31	38
18	plymouth	hatchback	four	31	38
19	toyota	hatchback	four	31	38
20	toyota	hatchback	four	31	38

WHERE body_style="convertible"

Results

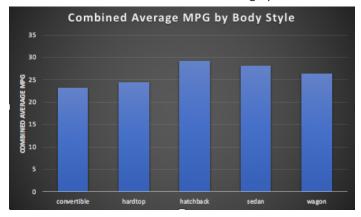
Row	make	body_style	num_of_cylinders	city_mpg	highway_mpg
1	toyota	convertible	four	24	30
2	volkswagen	convertible	four	24	29
3	alfa-romero	convertible	four	21	27
4	alfa-romero	convertible	four	21	27
5	porsche	convertible	six	17	25
6	mercedes-benz	convertible	eight	16	18

In order to identify the cars with the highest gas mileage, I created the following query: SELECT make, body_style, num_of_cylinders, city_mpg, highway_mpg FROM

 $\verb|shrivastava.automobile_data.automobile|\\$

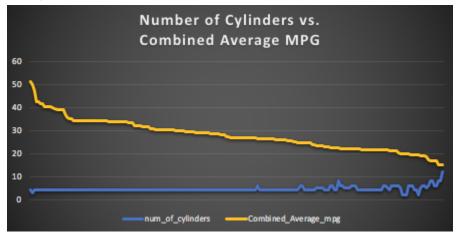
ORDER BY city_mpg DESC, highway_mpg DESC

After downloading the results of my queries, I created a new column in Excel titled average mpg.


I then sorted my data by highest Combined Average mpg and found that the 10 cars with the highest combined average mpg where:

1	make	body_style	num_of_cylinders	Combined_Average_mpg
2	honda	hatchback	4	51.5
3	chevrolet	hatchback	3	50
4	nissan	sedan	4	47.5
5	toyota	sedan	4	42.5
6	toyota	hatchback	4	42.5
7	volkswagen	sedan	4	41.5
8	volkswagen	sedan	4	41.5
9	chevrolet	hatchback	4	40.5
10	chevrolet	sedan	4	40.5

I then created the Pivot Table below, using Microsoft Excel, to identify which car body styles have the highest mpg.


Row Labels	of Combined_Average_mpg
convertible	23.25
hardtop	24.4375
hatchback	29.27536232
sedan	28.078125
wagon	26.35416667
Grand Total	27.99507389

I then used Microsoft Excel to create a bar graph to visualize the above data.

<u>Identify the relationship between Number of Cylinders and Combined Average MPG</u>

While looking at my data I noticed that the lower the number of cylinders a car had the higher the mpg usually was, so I used Microsoft Excel, to visualize this data.

Business Task Questions

Identify which types of cars have the highest gas mileage.

Conclusion

- Hatchbacks have the highest gas mileage, followed by Sedan, Wagon, Hardtop and Convertible
- The lower the number of cylinders, typically, the higher the mpg will be.

My recommendation would be to stock the five highest gas mileage cars for each body style. If customers are looking for high mileage cars it will be important to have a higher stock of those vehicles. It is also important to keep a wide range of body styles though, as different people have different uses for their car.