
Understanding CORS:  
A Beginner's Guide to Web Requests and 
Proxies 
 

1. Introduction: The Goal and the Roadblock 
Imagine you're building a new web application. You want to create a list of helpful resource 
links, but instead of just showing plain URLs, you want to automatically fetch the title of 
each webpage and display it. This would make your list far more user-friendly and 
informative. 

This seems like a straightforward task. With JavaScript, you can write a simple script to 
request the content of each URL and find its title. However, when you run the code, you hit 
an unexpected wall: the browser blocks your request. This isn't a bug; it's a fundamental 
browser security feature in action. 

This guide will explain exactly why this happens by introducing a concept called 
Cross-Origin Resource Sharing (CORS). We will then explore the elegant solution used 
to solve this common problem: a CORS proxy. 

Let's dive into the core security rule that causes this behavior in the first place. 

2. Why Your Browser Says "No": The Same-Origin Policy 
To understand why your request is blocked, you first need to understand the concept of an 
"origin." An origin is defined by the combination of a URL's protocol (like http), domain (like 
my-site.com), and port. If any of these three parts differ between two URLs, they are 
considered to have different origins, or be "cross-origin." 

URL 1 URL 2 Relationshi
p Reason 

http://my-site.com/page1 http://my-site.com/page2 Same-Origi
n 

Same protocol, 
domain, and 
(default) port. 

http://my-site.com https://my-site.com Cross-Ori
gin 

Different protocol 
(http vs https). 

http://www.my-site.com http://api.my-site.com Cross-Ori
gin 

Different 
subdomain. 



This brings us to the Same-Origin Policy. This is a critical security feature built into every 
modern web browser. Its purpose is to prevent a script running on one website from 
making requests to and reading data from another website without explicit permission. 

Think of it like this: your browser stops a script from shady-ad-network.com from secretly 
reading your account details on my-bank.com. This policy is a cornerstone of web security 
that protects your private information. 

The specific mechanism browsers use to enforce this rule is called CORS. 

3. Meet CORS: The Browser's Security Guard 
Cross-Origin Resource Sharing (CORS) is a security feature that blocks web pages 
from making requests to domains different from their own. It acts as a security guard, 
checking for permission before allowing a script from one origin to access resources from 
another. 

So, why did our title-fetching script fail? Here's a step-by-step breakdown of the blocked 
request: 

1.​Your JavaScript code, running on your website, uses the fetch command to ask for 
the HTML of an external site (e.g., zdnet.com). 

2.​Your browser sees that the request is for a different origin. 
3.​The browser checks if zdnet.com has given your website permission to make this 

request (by looking for a specific HTTP header, like Access-Control-Allow-Origin). 
4.​When it doesn't find that permission, the browser blocks the request to protect the 

user, and your script fails. 

Now that we clearly understand the problem, we can introduce the standard solution for 
working around this restriction safely. 

4. The Solution: Using a Helpful Intermediary 
The way to solve this problem is to use a CORS proxy. You can think of a CORS proxy as 
a friendly messenger. You aren't allowed to go to another domain to get information 
directly, but you can ask this messenger to go get it for you and bring it back. The CORS 
proxy is this friendly messenger. 

Here is how the new, successful workflow operates: 

●​ Your Request Changes: Instead of asking the browser to fetch the external URL 
directly, you ask it to fetch the proxy's URL. 

●​ Passing the Message: You include the real target URL (e.g., zdnet.com) as a 
parameter in the proxy's URL. 

●​ The Proxy Does the Work: The proxy server (which is not a browser and doesn't 
have the same security restrictions) makes the request to the external URL on your 
behalf. 

●​ Information is Returned: The proxy gets the website's HTML and sends it back to 
your script. 



●​ Success! From your browser's perspective, it only talked to the proxy, which is 
configured to allow the request. The security rule is satisfied. 

The code to implement this is surprisingly simple. Here is the exact implementation: 

const proxyUrl = 'https://api.allorigins.win/raw?url='; 
const response = await fetch(proxyUrl + encodeURIComponent(url)); 

Let's break down these two lines: 

●​ proxyUrl: This variable holds the address of our "helpful intermediary," the CORS 
proxy service. 

●​ fetch(...): We are now making a fetch request to our proxy. But you might be 
wondering, why do we wrap the url in encodeURIComponent()? This is an essential 
step that ensures special characters in the URL are properly encoded. For 
example, if a URL contains an & symbol, not encoding it could break the proxy 
request by making the proxy think the URL has ended prematurely. This function 
makes our request robust and reliable. 

This simple change allows our code to succeed while still respecting the browser's security 
model. 

5. Summary: The Big Picture 
Let's compare the two approaches side-by-side to see the complete picture. 

Direct Request (Blocked by CORS) Request via Proxy (Successful) 

1. Your code tries to 
fetch('https://external-site.com'). 

1. Your code 
fetch('https://proxy.com?url=https://external-site
.com'). 

2. Browser sees a cross-origin 
request. 

2. Browser sees a request to the proxy. Since 
the proxy is configured to permit this, the 
request succeeds. 

3. Browser blocks the request. 
Failure. 

3. Proxy fetches from external-site.com for you 
and returns the data to your code. Success! 

The most important insight for a learner is this: A CORS proxy is a standard tool that 
allows your browser-based code to interact with external servers that haven't explicitly 
allowed requests from your domain. It works without compromising the browser's essential 
security model. This is true because the browser's Same-Origin Policy remains intact; it 
correctly blocks your script's direct cross-origin request. The proxy operates on the 
server-side, where this browser-specific policy does not apply, thus respecting the security 
boundary rather than breaking it. 

This technique bridges the gap between browser security and the practical need to access 
public data from across the web. 



6. Key Takeaways 
To conclude, let's summarize the three core concepts you've learned. 

1.​The Same-Origin Policy is a Good Thing: It's not a bug, but a core security 
feature of the web that protects users from malicious scripts. 

2.​CORS is the Enforcer: It's the specific mechanism browsers use to implement the 
Same-Origin Policy, acting as a gatekeeper for cross-origin requests. 

3.​CORS Proxies are Your Workaround: They are a legitimate and common tool for 
safely fetching public, cross-origin data in your front-end applications when direct 
access is blocked. 

Understanding how to navigate CORS restrictions is a key step in becoming a more 
knowledgeable and effective web developer. 

 


	Understanding CORS:  
	A Beginner's Guide to Web Requests and Proxies 
	1. Introduction: The Goal and the Roadblock 
	2. Why Your Browser Says "No": The Same-Origin Policy 
	3. Meet CORS: The Browser's Security Guard 
	4. The Solution: Using a Helpful Intermediary 
	5. Summary: The Big Picture 
	6. Key Takeaways 


