Understanding CORS:

A Beginner's Guide to Web Requests and
Proxies

1. Introduction: The Goal and the Roadblock

Imagine you're building a new web application. You want to create a list of helpful resource
links, but instead of just showing plain URLs, you want to automatically fetch the title of
each webpage and display it. This would make your list far more user-friendly and
informative.

This seems like a straightforward task. With JavaScript, you can write a simple script to
request the content of each URL and find its title. However, when you run the code, you hit
an unexpected wall: the browser blocks your request. This isn't a bug; it's a fundamental
browser security feature in action.

This guide will explain exactly why this happens by introducing a concept called
Cross-Origin Resource Sharing (CORS). We will then explore the elegant solution used
to solve this common problem: a CORS proxy.

Let's dive into the core security rule that causes this behavior in the first place.

2. Why Your Browser Says "No": The Same-Origin Policy

To understand why your request is blocked, you first need to understand the concept of an
"origin." An origin is defined by the combination of a URL's protocol (like http), domain (like
my-site.com), and port. If any of these three parts differ between two URLS, they are
considered to have different origins, or be "cross-origin."

URL 1 URL 2 Relationshi o 2son

p

Same protocol,
domain, and

Same-Origi
: (default) port.

http://my-site.com/page1 http://my-site.com/page2

Cross-Ori Different protocol

http://my-site.com https://my-site.com gin (http vs https).

Cross-Ori Different

http://www.my-site.com http://api.my-site.com gin subdomain.

This brings us to the Same-Origin Policy. This is a critical security feature built into every
modern web browser. Its purpose is to prevent a script running on one website from
making requests to and reading data from another website without explicit permission.

Think of it like this: your browser stops a script from shady-ad-network.com from secretly
reading your account details on my-bank.com. This policy is a cornerstone of web security
that protects your private information.

The specific mechanism browsers use to enforce this rule is called CORS.

3. Meet CORS: The Browser's Security Guard

Cross-Origin Resource Sharing (CORS) is a security feature that blocks web pages
from making requests to domains different from their own. It acts as a security guard,
checking for permission before allowing a script from one origin to access resources from
another.

So, why did our title-fetching script fail? Here's a step-by-step breakdown of the blocked
request:

1. Your JavaScript code, running on your website, uses the fetch command to ask for
the HTML of an external site (e.g., zdnet.com).

2. Your browser sees that the request is for a different origin.

3. The browser checks if zdnet.com has given your website permission to make this
request (by looking for a specific HTTP header, like Access-Control-Allow-Origin).

4. When it doesn't find that permission, the browser blocks the request to protect the
user, and your script fails.

Now that we clearly understand the problem, we can introduce the standard solution for
working around this restriction safely.

4. The Solution: Using a Helpful Intermediary

The way to solve this problem is to use a CORS proxy. You can think of a CORS proxy as
a friendly messenger. You aren't allowed to go to another domain to get information
directly, but you can ask this messenger to go get it for you and bring it back. The CORS
proxy is this friendly messenger.

Here is how the new, successful workflow operates:

e Your Request Changes: Instead of asking the browser to fetch the external URL
directly, you ask it to fetch the proxy’'s URL.

e Passing the Message: You include the real target URL (e.g., zdnet.com) as a
parameter in the proxy's URL.

e The Proxy Does the Work: The proxy server (which is not a browser and doesn't
have the same security restrictions) makes the request to the external URL on your
behalf.

e Information is Returned: The proxy gets the website's HTML and sends it back to
your script.

e Success! From your browser's perspective, it only talked to the proxy, which is
configured to allow the request. The security rule is satisfied.

The code to implement this is surprisingly simple. Here is the exact implementation:

const proxyUrl = 'https://api.allorigins.win/raw?url=";
const response = await fetch(proxyUrl + encodeURIComponent(url));

Let's break down these two lines:

e proxyUrl: This variable holds the address of our "helpful intermediary," the CORS
proxy service.

e fetch(...): We are now making a fetch request to our proxy. But you might be
wondering, why do we wrap the url in encodeURIComponent()? This is an essential
step that ensures special characters in the URL are properly encoded. For
example, if a URL contains an & symbol, not encoding it could break the proxy
request by making the proxy think the URL has ended prematurely. This function
makes our request robust and reliable.

This simple change allows our code to succeed while still respecting the browser's security
model.

5. Summary: The Big Picture

Let's compare the two approaches side-by-side to see the complete picture.

Direct Request (Blocked by CORS) Request via Proxy (Successful)

1. Your code tries to 1. Your code
. ! . 2url= : -Si
fetch(https://external-site.com’). fiz)cmh'()https.//proxy.com 2url=https://external-site

2. Browser sees a request to the proxy. Since

2. Browser sees a cross-origin the proxy is configured to permit this, the

request. request succeeds.
3. Browser blocks the request. 3. Proxy fetches from external-site.com for you
Failure. and returns the data to your code. Success!

The most important insight for a learner is this: A CORS proxy is a standard tool that
allows your browser-based code to interact with external servers that haven't explicitly
allowed requests from your domain. It works without compromising the browser's essential
security model. This is true because the browser's Same-Origin Policy remains intact; it
correctly blocks your script's direct cross-origin request. The proxy operates on the
server-side, where this browser-specific policy does not apply, thus respecting the security
boundary rather than breaking it.

This technique bridges the gap between browser security and the practical need to access
public data from across the web.

6. Key Takeaways

To conclude, let's summarize the three core concepts you've learned.

1. The Same-Origin Policy is a Good Thing: It's not a bug, but a core security
feature of the web that protects users from malicious scripts.

2. CORS is the Enforcer: It's the specific mechanism browsers use to implement the
Same-Origin Policy, acting as a gatekeeper for cross-origin requests.

3. CORS Proxies are Your Workaround: They are a legitimate and common tool for
safely fetching public, cross-origin data in your front-end applications when direct
access is blocked.

Understanding how to navigate CORS restrictions is a key step in becoming a more
knowledgeable and effective web developer.

	Understanding CORS:
	A Beginner's Guide to Web Requests and Proxies
	1. Introduction: The Goal and the Roadblock
	2. Why Your Browser Says "No": The Same-Origin Policy
	3. Meet CORS: The Browser's Security Guard
	4. The Solution: Using a Helpful Intermediary
	5. Summary: The Big Picture
	6. Key Takeaways

