

Definitions
Percentage Behavior:
Treatment of different event types:
Examples:

Algorithm
pseudo-code:
Math:
Contexts:

Spreadsheet vs NRP Value Equation
Spreadsheet:

Pluses:
Minuses:

NRP Value Equation:
Pluses:
Minuses:

More about graph traversals:
More examples

An example of some work contributed to several deliverables:
Another example of materials purchased for several deliverables:
Value flow example

Definitions

Value equation - The value equation prescribes how revenue is distributed to all participants
(active affiliates) contributors in a context (which could be a project, or larger than a project). In
other words, it is used to compute a % of total revenue for every participant/contributor the
contributors who are selected by the value equation, taking into consideration different forms of
contributions and different modulators see more on OVN wiki
Bucket - A bucket is a division of the value equation that is given a percentage of the revenue
to be distributed. It also defines a filter, which determines which contributions go into that
bucket. Buckets are sequenced.
Rule - A rule defines the treatment of a type of contribution: both the equation used to compute
its value, and whether it will be treated as debt (eligible for distributions until paid off), equity
(eligible for distributions forever), or one-time (eligible for only one distribution).
A rule can also specify secondary filters to refine the selection of contributions for which the rule
applies.

Percentage Behavior:

●​ Remaining Percentage takes the percent of the remaining distribution amount after each
bucket is processed. The last bucket should be 100%. This option distributes only as
much as is defined by the claims affected by the bucket. There may be a leftover
amount, which will become part of the next bucket in the sequence.

●​ Straight Percentage divides up the total into the defined percentages. The bucket
percentages should add up to 100%. This option distributes the entire amount included
in the bucket percentage of the total. Recipients may receive more than their claim
amount. There will be no leftover.

Treatment of different event types:

●​ Consumption events are not contributions, although money and work that went into the
consumables (for example, polymers for 3D printing) are contributions.

○​ The amount of a contribution that went into a process is determined by the
quantity of the consumable that was consumed, and each contribution’s share of
the value of the consumable resource.

●​ Use events are not contributions, although money and work that went into the usable
resource (for example, a community-funded 3D printer) are contributions.

○​ The amount of a contribution that went into a process is determined by the use
value of the use event (hours * value per unit of use), and each contribution’s
share of the value of the usable resource.

●​ Citation events are not contributions, although money and work that went into the citable
resource are contributions.

http://valuenetwork.referata.com/wiki/Affiliates
http://valuenetwork.referata.com/wiki/Revenue
http://valuenetwork.referata.com/wiki/Contributions
http://valuenetwork.referata.com/w/index.php?title=Modulators&action=edit&redlink=1
http://valuenetwork.referata.com/wiki/The_Value_Equation

○​ The citation event may be valued by percentage of the value of the other inputs
to a process, or by quantity of the common unit of the value equation (for
example, Canadian Dollars). That value is used to compute the amounts of the
contributions to the cited resource.

●​ Production events may be contributions if a value equation bucket gives credit for
production. (Sensorica has not done so, but other networks want to.)

●​ Work events are direct contributions.

Examples:

Algorithm

The Value Equation Tutorial is more informative, but here’s some simplified

pseudo-code:

For each bucket:

Give the bucket its percentage of the amount_to_be_distributed
​ (see explanation of straight and remaining percentages above)
If the bucket amount goes directly to one agent:
​ give it to that agent
else:
​ run the value equation for that bucket:
​ ​ gather the contributions that match the bucket filter:

●​ date range filter is pretty simple, gets all contributions for the date
range for the context agent (this is intended mostly for
non-production related contributions)

●​ Order, delivery or process filters gathers all of the contributions
that are inputs to the selected object (order, delivery or process),
including tracing back through all previous processes that fed into
the selected object.

○​ In all of those cases, compute the amount of the
contribution that went into the selected object.

■​ (see examples on next pages)
​ ​ ​ For each contribution:

●​ get the bucket rule that applies
○​ (if no rule applies, that contribution is out of this run)

●​ compute the value of the contribution using the bucket rule claim
creation equation

●​ if the contribution has a claim already, use that claim
○​ (if the claim is zero (has been paid off), then that

contribution is out of this run)
else create a claim using the full value of the contribution

●​ pro-rate the distribution amount for this contribution according to
the share of the contribution that applied to this bucket

●​ adjust the claim with the pro-rated amount according to the bucket
rule claim treatment:

○​ until paid off (debt-like), or
○​ forever (equity-like), or
○​ one distribution (don’t give it any more)

https://docs.google.com/presentation/d/1h-t6p55KTK-zlXIH9gUG6TYiwj1ARk4dq0_Q9C5Wh80/edit?usp=sharing

Now all the contributions that apply to this bucket have been collected, and the amount
of each contribution that applies to this bucket has been computed.
So we allocate the amount to be distributed to this bucket to the claims proportionately:

1)​ Straight percentage: the amount to be distributed divided by the claim’s
percentage of the total claims for that bucket, or: amt / (total_claims / claim). So,
for example, if the amount to be distributed is $100, and the total value of all the
claims for that bucket are 4, and the value of each claim is 2, then each claim
gets $50: 100 / (4/2) = 50. If each of the claims was for 200, they would still just
get $50. The amount of the bucket is distributed, no more and no less.

2)​ Remaining percentage: For the example above, each claim gets $2. For an
example where each claim was 80, each claim gets $50. In other words, in
remaining, you get your claim, but it is capped by the bucket % amount.

a)​ When you select remaining percentage, all of the claims in all of the
buckets might not use up the total amount to be distributed to all buckets.
As stated above, the percentage for the last bucket should be 100%, and
then it will allocate the remainder. Otherwise, you might get some left
over, and then need to figure out how to distribute that.

In other words, each bucket runs its own value equation, for its own contributions, using
the percentage of the distribution amount given to that bucket.

Math:

The claim creation equation in a bucket rule allows mathematical expressions that can use any
mathematical operator, parentheses to manage precedence, and any of these variables from
the Economic Event that the claim will be based on:

●​ quantity
●​ value
●​ valuePerUnit
●​ valuePerUnitOfUse (of the Resource used)
●​ pricePerUnit (of the Resource Type)

More variables could be added, but those are the ones that can be used as of this writing.

The various filters select the Economic Events and their associated claims to be included in a
bucket or bucket rule.

In straight percentage, the values of the selected claims are summed, and the total amount to
be distributed by the bucket is allocated to each claim based on its percentage of the total
claims for the bucket.

See description above for remaining percentage.

Most of the above could be done in a spreadsheet, and can be described by mathematical
notation, although we have seen, both often and recently, that spreadsheets can be buggy and
difficult to understand, too.

The other mathematical operation is graph traversal, following the resource flows that went into
an order or shipment, and traversing back into consumption, use and citation events to gather
the contributions that went into them. The graph traversals involved are pretty specialized, and I
don’t know how you would describe them in declarative mathematical notation, nor do them in a
spreadsheet without extreme convolutions. They could possibly be declared in an advanced
matrix manipulation language like APL, but it is notoriously a write-only language.

https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/Write-only_language

Contexts:

If a graph traversal crosses a context agent boundary (for example, from PV characterization to
Digital Fab), and the other context does not use the same value equation✦, the PV
characterization value equation stops and gives the distribution amount to Digital Fab, to be
re-distributed by their value equation.

✦ An example where two contexts might use the same value equation is where both were
projects in Sensorica, and both were using a Sensorica value equation.

Spreadsheet vs NRP Value Equation

Spreadsheet:

●​ Pluses:

○​ Familiarity: many people know how to use them
○​ Some degree of transparency: all of the code is in the spreadsheet

●​ Minuses:

○​ Can get so complicated that they are buggy, with no debug tools
■​ Easy to make mistakes

○​ Once they get that complicated, they are no longer transparent
■​ You may not be able to understand them anymore yourself
■​ For example,

https://groups.google.com/forum/#!topic/sensorica/1w6eeft3BDI
○​ They can’t traverse graphs without extreme skills, and even then, not to

the degree required for value equations
○​ Their code is not open source, can’t add features easily

■​ But: plugins! A lucrative market!
○​ Requires exporting data from NRP or providing other spreadsheets where

people enter data (that’s if you want to abandon NRP). And the selections
and export are not in the spreadsheet: that is, are not transparent.

NRP Value Equation:

●​ Pluses:

○​ More structured than a spreadsheet
■​ In a spreadsheet, you need to do a lot of structuring yourself
■​ In other words, once you know how they work, NRP VEs may be

easier and less buggy
○​ The basic structure of the value equation may be more clear (or not,

depend on the VE)
○​ Different people can do different value equations and compare in sandbox

■​ Programmers can create comparison tools as required
■​ A “Copy VE” feature could be added to make it easier

○​ A complicated equation in a spreadsheet can be less complicated in NRP
○​ Graph traversal built in.
○​ Code is open source, we can add features
○​ And the selections of events are transparent (on the face of the value

equation).
●​ Minuses:

○​ Not as familiar, has a learning curve
○​ The outer structure of the value equation may be more clear than a

spreadsheet, but the inner details of traversals and pro-rating distribution
amounts are buried in the code.

■​ You can actually read the code, but it’s probably not as familiar as

https://groups.google.com/forum/#!topic/sensorica/1w6eeft3BDI

spreadsheet functions.
■​ But, see Bayle’s log proposal

○​ Graph traversals are advanced math, not for the faint of heart
■​ But necessary anyway, can’t be avoided

More about graph traversals:

●​ http://www.mkbergman.com/1020/the-age-of-the-graph/
●​ graph theory for kids
●​ http://facebook.github.io/graphql/
●​ http://www.slideshare.net/slidarko/the-gremlin-traversal-language
●​ http://neo4j.com/blog/open-cypher-sql-for-graphs/

https://github.com/valnet/valuenetwork/issues/443
http://www.mkbergman.com/1020/the-age-of-the-graph/
https://drive.google.com/file/d/0Bw3BMDqKsMmXa293MWVEdlpiNEk/view
http://facebook.github.io/graphql/
http://www.slideshare.net/slidarko/the-gremlin-traversal-language
http://neo4j.com/blog/open-cypher-sql-for-graphs/

More examples

An example of some work contributed to several deliverables:

●​ If I contribute $40 worth of work… to a process that created 4 deliverables… then
I added $10 of value to each deliverable.

●​ If 2 of them were sold on an order, I added $20 of value to the order.

●​ When do I get my other $20? When the other 2 are sold. Maybe. Might depend
on the other buckets in the Value Equation.

Another example of materials purchased for several deliverables:

●​ If I buy 100 meters of optical fiber for $200, the value per unit is $2.

●​ If a process uses 15 meters, and produces 4 deliverables, that’s $7.50 of optical
fiber per unit.

●​ If one of those 4 deliverables was consumed in creating a purchased product,
that’s $1.875 per purchased product.

●​ Might be awhile till I get my $200 back, but I am a patient person. And the value
equation says I will get 20% extra for my patience. So that’s $2.25 from this
distribution.

Value flow example

	
	
	Definitions
	Percentage Behavior:
	Treatment of different event types:
	
	
	Examples:

	Algorithm
	pseudo-code:
	
	
	Math:
	Contexts:

	
	
	Spreadsheet vs NRP Value Equation
	Spreadsheet:
	●​Pluses:
	●​Minuses:

	NRP Value Equation:
	●​Pluses:
	●​Minuses:

	More about graph traversals:

	More examples
	An example of some work contributed to several deliverables:
	Another example of materials purchased for several deliverables:
	Value flow example

