
What is a Client Session?
In the context of client observability, a session is a contiguous, uniquely referenceable
period of time during the running of an application that can be associated with telemetry
recorded during its duration. Conceptually, a data model that fully describes a session
comprises the following:

1. Core data: a session can be identified uniquely by an ID, and it should have start and
end timestamps that denote the period during which the session was active.

2. Extended data and metadata: a session can contain mutable and immutable data that
describes itself (e.g. background/foreground userId) and its runtime environment (e.g.
network connection status). This metadata can be transitively applied to the telemetry
associated with the session.

3. Relationship to signals: a session can be associated with telemetry explicitly (e.g. a log
has the attribute session.id that denotes the session it was recorded in), or implicitly (e.g.
if telemetry overlaps with the time in which a session is active).

Beyond the data model, implementations of sessions can operate differently along a number of
dimensions, including but not limited to the following:

● What triggers a session to start or end?
● Is there a maximum or minimum to session duration?
● How is a session associated with telemetry? Explicitly or implicitly?
● When an observed client is active, must there be an active session?
● Can sessions overlap?
● Is there a limit to how much telemetry can be associated with a session?
● And so on…

Standardizing Sessions in OTel
Currently, sessions are represented in OTel via semantic conventions and Events. Notably, the
session.id attribute can be used to associate a signal with a particular session, while the
session.start and session.end events capture the starting and ending of sessions. This covers
some key aspects of the data model, but much is still missing, namely a common understanding
of how sessions can operate, and a way (or object?) to attach additional data and metadata to.

Right now, sessions mostly exist so you can group and filter telemetry by a particular unique ID
to find out all the telemetry associated with that given session. And the only way to get
information about a session is to examine the telemetry associated with them or look at the data
on the start and end events. This is suboptimal as there’s no guarantee of data integrity
between the different signals that a session can be associated with. At best, this can be



considered a workaround, but it’s probably more fair to say that there is no good way to
associate data and metadata to a session in OTel beyond the core data found in the events.

There is also nothing in the OTLP spec that precisely defines the concept of a session or how it
should operate within the ecosystem. Similarly, there is nothing in the OTel APIs that allow users
to work with sessions beyond setting the attributes with the right attribute names. The lack of
standardization means that we are leaving it up to vendors and users to decide how sessions
work and how SDK users should interact with them. This means that while semantic
conventions offer a basic description of a session as it applies to signals, implementations of
sessions are bespoke, and are thus not portable from vendor to vendor based on how they are
defined now. This goes against the ethos of OTel and should be remedied.

Goals
Improving the state of support for sessions in OTel can be broken down into the following
high-level goals:

● Defining the canonical representation of sessions in the OTel data model
○ Building on what current exists, this would consist of a richer set of semantic

conventions and a way to persist session data and (mutable) metadata
independent of telemetry and events

○ Ideally, the first version of this would not require any modifications to OTLP so it
can be rolled out as an additive feature on top of existing tooling

● An API that makes it easy to associate OTel signals with sessions, abstracting
implementation detail away from the SDK user

● An implementation of the API that balances the need to offer flexibility in how sessions
operate to support the myriad vendor and client use cases, but well-defined enough to
offer enough of a structure to allow instrumentations to be portable.

● The starting and ending of sessions should be directly observable from outside the
application without trying to deduce them from recorded telemetry or whatever data
might be persisted for a session. The existing session start and end events seem like a
good starting point to accomplish this goal.

● The design should explicitly support the following client platforms:
○ Web
○ iOS
○ Android
○ React Native

Stretch Goals
There are additional goals that should be considered, if not for the first version, but for future
versions. Designs should consider these so as to not prevent any of them from being pursued in
the future.



● Support in the API and implementation for long-running sessions that are resilient to
unexpected termination and other adverse runtime conditions that make clients
unreliable.

● Support in the API and implementation for telemetry associated with a session to be
transmitted to the telemetry backend with guarantees about whether more data from a
session can be expected.

Non-Goals
To limit the scope of what the project is expected deliver, the following is explicitly out of scope:

● Definition of how sessions work at the Collector level. This effort is focused on the data
model and API levels at this point.

● Harmonize the concept of application users with sessions. While sessions and users
may be related concepts, this effort will not address how users are represented in OTel.

● Provide solutions to other related concepts that differentiate the modeling of usage of
stateful client application execution with that of stateless microservices. While many of
these concepts can be referenced by or be related to sessions, creating a data model
and API to make working with them easier is not in scope.

● Explicitly call out authenticated vs unauthenticated sessions as a top level concern. The
design should allow whether a session is authenticated to be persisted as a property of a
session, it will not be elevated and dealt with explicitly at the API level. This will likely be
captured as a semantic convention if referenced at all.

● Design that is appropriate to use for backend applications that suffer from some of the
limitations being addressed. While there might be overlapping concerns, introducing
backend, distributed system use cases will introduce myriad new wrinkles that will
greatly increase the complexity of this effort

● Implementation in every language SDK. Not all languages and platforms require the
notion of sessions, so languages SDKs where it doesn’t make sense need not be
considered.


