Spring 2020

C Basics for Babies

50.005 Computer System Engineering

Materials taken from various resources. Suitable for 6-12 months old babies.

Installing C
Ubuntu

MacOS (Catalina)
Hello World!

Learning Obijectives

Part 1: .c and .h file extensions
Learning points

Part 2: Primary Data Types
Learning Points

Part 3: Derived Data Types
Arrays
Pointers
Strings
Structures
More about Structure Size

Learning Points

Part 4: Loops and Iterations
Learning Points

Part 5: Functions
Learning Points

Part 6: Dynamic Memory allocation
Learning Points

Summary

Natalie Agus
INFORMATION SYSTEMS TECHNOLOGY AND DESIGN
1

50.005 C Basics for Babies

Installing C

Ubuntu

To install C compiler and its manual on Ubuntu, type the following into the terminal:

sudo apt-get update
sudo apt-get upgrade

sudo apt install build-essential
sudo apt-get install manpages-dev

Then you can check if gcc is installed successfully using:
And see output similar to below:

gcc (Ubuntu 7.4.0-1ubuntul~18.04) 7.4.0
Copyright (C) 2017 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

macOS (BigSur)

For MacOS users, simply install Xcode. It automatically comes with Command Line Tools
that include the C compiler. If not, you can always download it separately. There’s plenty of
guides on the internet on how to do this easily.

You can type in the terminal and see output similar to below upon
successful installation:

Configured with: --prefix=/Library/Developer/CommandLineTools/usr
--with-gxx-include-dir=/Library/Developer/CommandLineTools/SDKs/MacOSX.sd
k/usr/include/c++/4.2.1

Apple clang version 11.0.0 (clang-1100.0.33.12)

Target: x86 64-apple-darwinl9.0.0
Thread model: posix
InstalledDir: /Library/Developer/CommandLineTools/usr/bin

50.005 C Basics for Babies

Hello World!

Now install your favourite editor (one recommendation is VSCode) and create the following
hello.c file. If you are using WSL please set up VSCode for WSL environment first. You
can find the info in edimension > information tab.

#include <stdio.h>
int main()

{

printf("Hello, World!");
return 0;

Save it in a directory of your choice, and then cd to that directory. Type the following to
compile and run them:

$ gcc -o anything hello.c
$./anything

And you should see the following output in your terminal:

Hello, World!

Note: for MacOS users, it is NOT recommended for you to use XCode IDE.

For WSL users, remember you need to install and activate your WSL remote server when
you use VSCode to edit your code. Go to the bottom left corner of your VSCode and ensure
it has the WSL indicator (sometimes with Ubuntu written if you use it) like this.

&

> OUTLINE
»¢WSL ¥ master*

Otherwise, click open the green remote window logo on the bottom left corner (ensure you
have installed the Remove Development extension pack for VSCode) and select
Remote-WSL: new Window. A new window in your WSL home directory will pop up. You
can save or open new file and navigate the folders from there.

https://code.visualstudio.com/docs/remote/remote-overview

50.005 C Basics for Babies

Use the terminal in VSCode instead: Terminal >> New Terminal. A new terminal will be
created at your ubuntu home directory. Type pwd to find out where you are. If you’d prefer
to go to your windows directory, you can navigate to it as well: cd /mnt/c/Users/<path
to your directory> firstin the terminal. If you are not familiar with terminal commands,
do homework 1 first.

Learning Objectives

In this intro class, we will learn how to:

1. Create .c and header files
Create, manipulate, print different primary data types
Create, manipulate, print different derived data types
Loops and iterations
Create functions, and pass value by reference
Allocate and manage memory dynamically

ook wN

At the end of this class, you may head to e-dimension (Week 2) and answer the questions
there to test your understanding. The test grade is for personal achievement only and
not included for computation of grades in 50.005.

50.005 C Basics for Babies

Part 1: .c and .h file extensions

Typically, a C program comes with .c and .h file extensions. The files with .h extension is
called the header files, and typically contain:
1. Functions declaration
Constants declaration
Global variables
Struct declaration
Library imports

o0

And so on that’s required by the .c files. These header files are then #included in .c files
where the bulk of your main code lies. You can think of .c files as the files that contain the
actual work.

For example, create a file cclass_part1.c with the following content:

#include "cclass.h"
int main(int argc, char** argv){
printf("Hello World!\n");

printf("Constant BUFFERSIZE has a value of %d \n", BUFFERSIZE);
}

And create a file cclass.h with the following content:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define BUFFERSIZE 1024

Save both of them in the same folder and compile it: gcc cclass_partl.c -o out
Run it, and you will see such output:
natalieagus@Natalies-MacBook-Pro-2 C-(Class Codes % gcc cclass_partl.c -o out

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
Hello World!

Constant BUFFERSIZE has a value of 1024
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

Notice how the .c can print the amount of BUFFERSIZE, which is a constant that is declared
earlier in the header file imported.

50.005 C Basics for Babies

Learning points

1. You can import header file using the #include keyword and the header file name
using the quotation marks, €.g: #include "cclass.h"

2. You can import standard libraries using the #include keyword and the arrow
brackets: #include <stdio.h>

3. There are many different C standard libraries. These three are the most basic ones
that allow you to perform simple system calls such as print.

4. You can define int/float constants using the keyword #define NAME value

Technically, you can dump everything within a single .c file, but you may find that you may
want to share some function declarations for many different .c files. It is convenient then to
declare them earlier in a single header file that’s imported by different .c files.

To give you some context, a single program that’s written in C can be comprised of millions
of lines. One of such examples is the interpreter of your favourite language, Python. Python
interpreter (the program that you call when you type python / python3 in command line
to run a .py script) is written in C.

Part 2: Primary Data Types

m
never tried a RAM
sandwich before.
Can I try it?

7 1A

Char[]

BOYS

These are the basic data types in C that we will encounter in this class: int, char,
float, and void. Void means nothing or undefined type. We will talk more about this
later. The size of int is 32 bits (4 bytes), float is 32 bits (4 bytes), and char is 8 bits (1

50.005 C Basics for Babies

byte). You can increase the precision of the float into 8 bytes using double (also a float but
with double precision) type instead of float. However, it’s not required for this course.

Add these lines into your main function:

int x = 5;
float y =
char a
char b
char c

printf("Printing integer x: %d \n", x);

printf("Printing float y: %f \n", y);

printf("Printing characters abc: %c %c %c \n", a,b,c);
printf("Printing characters as ASCII: %d %d %d \n", a,b,c);

printf("Size of int is %d bytes, size of float is %d bytes, size of char is %d
bytes\n", sizeof(int), sizeof(float), sizeof(char));

50.005 C Basics for Babies

Compile it and you see the output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
Printing integer x: 5
Printing float y: 3.000000

Printing characters abc: a b ¢
Printing characters as ASCII: 97 28 99
Size of int is 4 bytes, size of float is 4 bytes, size of char is 1 bytes

As you can see, primary types are pretty basic. The way you print them needs the
“formatting” (similar to Java): %d for int, %f for floats, and %c for characters, and you
supply the content later on. You can read more about it in printf documentation.
Meanwhile, here’s the cheatsheet you need:

%c character

%d decimal (integer) number (base 10)
%e exponential floating-point number
%f floating-point number

%i integer (base 10)

%0 octal number (base 8)

%s a string of characters

%u unsigned decimal (integer) number
%x number in hexadecimal (base 16)
%% print a percent sign

\% print a percent sign

Don’t underestimate the power of print. It saves you a lot of time when debugging. Although
it is technically not the professional way of debugging, it works better than nothing at all.
Don’t be lazy of printing things and checking your work every now and then. Or, you
can use a debugger like a pro.

WARNING: Debugging C is pretty painful if you DO NOT do incremental debugging.

Learning Points

1. Primary data types: int, float, char

2. Use print formatting

3. Variable naming follow the same rule as Java:
a. You can’t start with a digit
b. Upper and lower case is treated differently (Case sensitive)
c. You can’t use keywords as variable names

https://linux.die.net/man/3/printf

50.005 C Basics for Babies

Part 3: Derived Data Types

These are the derived data types in C that we will encounter in this class: array (of int,
chars - strings, etc), pointer, and structure.

Arrays

Creating arrays of basic types is easy, using the common [] array declaration. Add these
lines to your main function:

int vector_int[3] = {1,2,3};
float vector float[3] = {0.3,0.4,0.5};

char characters[5] = {'a',"'i"','u’,'e",'0"};

printf("Contents of vector_int %d %d %d \n", vector_int[@], vector_int[1],
vector_int[2]);

printf("Contents of vector_float %f %f %f \n", vector_float[@], vector_float[1],
vector_float[2]);

printf("Contents of the second char: %c\n", characters[1]);

Compile it and you see the output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % gcc cclass_partl.c -o out
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
Contents of vector_int 1 2 3

Contents of vector_float 0.300000 0.400000 0.500000
Contents of the second char: i
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %

Notice that the array size cannot be dynamic! It has to be a CONSTANT.

If you try to compile stuff like this:

int array_size = 3;

int vector_int[array_size] = {1,2,3};

You will be met with such error:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % gcc cclass_partl.c -o out
cclass_partl.c:23:20: error: variable-sized object may not be initialized

int vector_int[array_size] = {1,2,3};

Arsrsrsrsrsrsrsrses

This is because array_size is a variable.

50.005 C Basics for Babies

Also, with the [] you are declaring an object with automatic storage duration (in
stack). This means that the array lives only as long as the function that calls it
exists.

You can also declare it in static memory (see this section for explanation on what
is static memory) using the keyword static, e.g:

static int vector_int[3] = {1,2,3};

By using the static declaration, the array will only be initialized once and its content static
memory will persist for as long as the program lives. However, it’s also fixed in size.

If you want to create an array with a size that’s determined later during runtime, or persists
outside the function calling it (in heap), then you should use malloc or calloc that’s
going to be discussed in the later part. Before we can learn this, we need to know what a
pointer is first.

Pointers

A pointer data type is indicated by the * (star) sign. You can make a pointer of any primary
or derived data types. The pointer simply means the address of the data you are pointing
to.

Paste the following code in your main file:

int *vector_int_pointer = vector_int;

printf("Address of vector_int array is @x%11x\n", vector_int_pointer);

printf("Address of the first element in vector_int array is ox%llx\n",
&vector_int[0]);

printf("Address of the second element in vector_int array is @x%1llx\n",
&vector_int[1]);

printf("Address of the third element in vector_int array is @x%11lx\n",
&vector_int[2]);

printf("Printing address using pointer : \n");

printf("Address of the first element in vector_int array is ox%11lx\n",
vector_int_pointer);

printf("Address of the second element in vector_int array is @x%llx\n",
vector_int pointer+l);

printf("Address of the third element in vector_int array is @x%11lx\n",

vector_int_pointer+2);

10

50.005 C Basics for Babies

You’ll find such output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out

Address of vector_int array is @Ox7ffee26129bc

Address of the first element in vector_int array is @x7ffee26129bc
Address of the second element in vector_int array is @x7ffee26129c0
Address of the third element in vector_int array is 0x7ffee26129c4

Printing address using pointer :

Address of the first element in vector_int array is @x7ffee26129bc
Address of the second element in vector_int array is @x7ffee26129c0
Address of the third element in vector_int array is @x7ffee26129c4

Let’s digest this output:
1. We create a pointer (the star can stick to either side, doesn’t matter where it is so
long it is between the data declaration and variable name) of type int, meaning that it
is pointing to the address of the first integer element in vector_int.

2. Notice that an array is basically a pointer, therefore we can simply do:
int *vector_int_pointer = vector_int;

3. As seen in the print format, we can print the content of the pointer and we have
0x7ffeec216129bc (address space is huge as its a 64 bit system)

4. This is the address of the first element of the vector_int. You can also manually
print an address of your data using the & operator, e.g: &vector_int[0]

5. That’s why we have the printed output of &vector_int[8] and vector_int_pointer as
the same thing at 0x7ffeec216129bc.

6. Notice the address of the next two elements in the array differ by FOUR bytes:
Ox7ffeec216129bc, Ox7ffeec216129cO, and Ox7ffeec216129c4.

7. This is because recall from Part2, the sizeof(int) is 32 bits (4 bytes). The size of
a pointer however is 64 bits (8 bytes). This means that although it is a 64 bit
system, we can access memory address like a 32 bit system where it differs by
just 4 bytes instead of 8!

8. We also know that array is a contiguous block of memory. Therefore we also can
obtain the address of the other elements by incrementing the pointer value by 1
(word of 4 bytes), which is what we are doing here (obtaining the same output at
Ox7ffeec216129¢O:

printf("Address of the second element in vector_int array is @x%x\n",

vector_int_pointer+l);

11

50.005 C Basics for Babies

Now let’s examine how we can change the content of the integer array using the pointer.
Paste the following code:

printf("The original second element is %d\n", vector_int_pointer[1]);
vector_int_pointer[1] = 5;

printf("The new second element is %d\n", vector_int_pointer[1]);
printf("The new second element is %d\n", *(vector_int_pointer+l));

And you have the output:

The original second element is 2
The new second element is 5
The new second element is 5

So this teaches you that:
1. You can access the content pointed by the pointer using the [i] just like how you
access elements in an array. In essence, the [i] means that we:
a. Compute the effective address EA using vector_int_pointer + i*4
b. Obtain the element at Mem[EA]
2. OR you can also perform it manually by computing the EA yourself:

a. Add 1 word (4 bytes, not 8!) into the value of vector_int_pointer:
vector_int_pointer+l

b. Obtain the element pointed to by the content of the variable explicitly
using the * operator. You can read this * operator as “value at”

Can we create pointers to other primary data types that’s not an array? Paste the following
code:

int z = 5;
int *z_pointer = &z;

printf("Value of z is %d \n", z);

printf("Z is stored in address Ox%11lx\n", z_pointer);

printf("The pointer to Z is stored in address @x%11lx\n", &z_pointer);
printf("Size of Z pointer is: %d \n", sizeof(z_pointer));

*z_pointer = 6;

printf("The new value of z is %d\n", *z_pointer);

Compile it and this is the output you’d get:

Value of z is 5
Z 1s stored in address @x7ffeeab4c97c
The pointer to Z is stored in address 0x7ffeeab4c970

Size of Z pointer is: 8
The new value of z is ©

12

50.005 C Basics for Babies

Here’s why:

1. The integer z is stored at address Ox7ffeeab4c97c

2. We create a pointer into it, called z_pointer

3. z_pointer itself is stored at 0x7ffeeab4c970. The content of Ox7ffeeab4c970 is
Ox7ffeeab4c97c, that is the address of z. Therefore, we can say that z_pointer
IS A POINTER because it does not store a content but rather, an address.

4. Recall its a 64 bit system, so the size of pointer is 8 bytes.

5. We can change the value that z_pointer is pointing to using the * operator too.
Recall the other operator we learn, the & operator means obtaining the address
of the variable it is operated on (address of).

Strings

What about strings? Well, strings are none other than an array of characters.

printf("%s", hello world);

You will find that you have such output, with some garbage content at the end.

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
hello worldﬂ@ﬁ>ﬂ@ﬁ>E

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

This is because printf with %s format will keep printing until it finds a NULL
terminated character.

You can easily fix this by adding a null termination character (as NULL or \0’):

printf("%s\n", hello_world);

And printf will just print “hello world”.

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
hello world

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %

Of course it is tedious to type characters one by one. Since a string is just an array of
characters and a pointer works the same way as array identifiers, we can simply create a
string using char pointer. This is called string literal (or equivalently, constant):

char *hello_world_readonly = "hello world";

printf("%s\n", hello world_readonly);

13

50.005 C Basics for Babies

printf("Size of hello_world_better pointer %d\n",sizeof(hello_world_readonly));

Conveniently, the NULL termination is automatically added for you.

hello world
Size of hello_world_better pointer 8
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %

You can also initialize string this way:

char hello _world_init[] = "hello world";

hello_world_init[1] = 'u‘;
printf("The new string is %s\n", hello_world_init);

The difference between this and the method previously is that the method previously is
allocated in read-only memory which cannot be modified during runtime.

Whereas initializing it with the [] within a function implies that it will be allocated in
heap/stack (no formal documentation on this but this is how it is usually implemented)
that’s modifiable during runtime.
The new string is hullo world
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %

If you try to modify the static read-only string literal helloworld:

char *hello_world_readonly = "hello world";
printf("%s\n", hello world_readonly);

hello world _readonly[1] = 'u‘;
printf("The new string is %s\n", hello_world_readonly);

You will be faced with errors:
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %
hello world
zsh: bus error ./out
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

A very common way to initialise a string is by defining a size to the array declaration as an
empty string. Then we can print strings into it using sprintf. It overwrites the entire buffer.

char sentence[BUFFERSIZE] = "";

sprintf(sentence, "Hello World");

14

50.005 C Basics for Babies

printf("The sentence is: %s \n", sentence);
sprintf(sentence, "This is another sentence overwriting the previous one. Lets write a

number %d. ", 5);
printf("The sentence now is modified to: %s \n", sentence);

You can use the same print formats as you’d do with printf. Of course the size of the
buffer has to be big enough. Recall BUFFERSIZE is a constant that’s defined in the header
file.

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
The sentence is: Hello World
The sentence now is modified to: This is another sentence overwriting the previous one. Lets write a number 5.

If you want to concatenate between two strings, you can use strcat(char *dest, char
*source):

char sentence_append[64] = "The quick brown fox jumps over a lazy dog";
strcat(sentence, sentence_append);

printf("%s \n", sentence);

The content of the second array is appended at the NULL termination of the first sentence,
hence forming a new sentence:

This is another sentence overwriting the previous one. Lets write a number 5. The quick brown fox jumps over a lazy dog

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % [

There’s a whole lot of string operations. You don’t have to memorize them. We aren’t testing
you in C like how Digital World tests you on Python. We just want you to be able to apply
and code in C at your own pace.

For what it's worth, the nine most commonly used functions in the string library are:

strcat - concatenate two strings

strchr - string scanning operation

strcmp - compare two strings

strcpy - copy a string

strlen - get string length

strncat - concatenate one string with part of another
strncmp - compare parts of two strings

strncpy - copy part of a string

strrchr - string scanning operation

You should be able to search by yourself how to use these operations when the need arises.

15

50.005 C Basics for Babies

Structures

In C there’s no classes / objects. The closest that we have to objects and classes are
structs. These are data structures that contain a collection of primary and derived data

types.

You can declare structures using the struct keyword, and then declare its members. Paste

the following to your main function:

struct Vector_Int{
int x;
int y;
int z;
char name[64];

1

struct Vector_Int vi;

vli.x = 2;
vli.y = 3;
vli.z = 10;
sprintf(vl.name, "Vector 1");

struct Vector_Int v2 = {3,5,11, "Vector 2"};

printf("Values of vl is x:%d y:%d z:%d name: %s\n", vl.x,
printf("Values of v2 is x:%d y:%d z:%d name: %s\n", v2.x,

You will have such output:

- g v g - A W LT AT J

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes
Values of vl is x:2 y:3 z:1@ name: Vector 1
Values of vZ2 is x:3 y:5 z:11 name: Vector 2
nhatalieagus@Natalies-MacBook-Pro-2 C-Class Codes

vli.y, vl.z, vl.name);
v2.y, Vv2.z, v2.name);

You can also declare struct within struct:

struct Info{

char name[32];

int age;

struct address{
char area_name[32];
int house_no;
char district[32];

} address;

ts

16

50.005 C Basics for Babies

struct Info my_Info = {"Alice”, 25, "Somapah Road", 8, "Upper Changi'};

printf("Name: %s, age %d, area name %s, house number %d, district %s\n", my_Info.name,
my_Info.age, my_Info.address.area_name, my_Info.address.house_no,
my_Info.address.district);

And we can print out the members:
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out

Name: Alice, age 25, area name Somapah Road, house number 8, district Upper Changi
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

Since address is a struct that’s already defined within Info, we can also now create a
struct variable addrss:
struct address my_Addrs = {"Another Road", 15, "Lower Changi"};

printf("Another address %s %d %s \n", my_Addrs.area_name, my_ Addrs.house_no,
my_Addrs.district);

er address Another Road 15 Lower Changi
ieagus@Natalies-MacBook-Pro-2 C-Class Codes %

Of course equivalently we can just define two struct and declare it as a member:

struct address

{
char area_name[32];
int house_no;
char district[32];

ts

struct Info

{

char name[32];
int age;
struct address address;

1

struct Info my_Info = {"Alice", 25, "Somapah Road", 8, "Upper Changi"};

printf("Name: %s, age %d, area name %s, house number %d, district %s\n", my_Info.name,

my_Info.age, my_Info.address.area_name, my_Info.address.house_no,
my_Info.address.district);

struct address my_Addrs = {"Another Road", 15, "Lower Changi"};
printf("Another address %s %d %s \n", my_Addrs.area_name, my_ Addrs.house_no,
my_Addrs.district);

And we still have the same output as above.

17

50.005 C Basics for Babies

hatalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
Name: Alice, age 25, area name Somapah Road, house number 8, district Upper Changi

Another address Another Road 15 Lower Changi
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

The byte size of structures is roughly the sum size of its members. For example,

struct Vector_Int{
int x;
int y;
int z;
char name[64];

}s
struct Vector_Int vector_sample;

printf("Size of Vector_Int struct is %d bytes\n", sizeof(struct Vector_Int));

printf("Size of its members are x %d bytes, y %d bytes, z %d bytes, and name %d
bytes\n", sizeof(vector_sample.x), sizeof(vector_sample.y), sizeof(vector_sample.z),
sizeof(vector_sample.name));

Results in the output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
Size of Vector_Int struct is 76 bytes

Size of its members are x 4 bytes, y 4 bytes, z 4 bytes, and name 64 bytes

This is because each int is 4 bytes, and the char is 64 bytes : 12 + 64 = 76 bytes.

Of course you can have an array of structures. Just treat structs like a new data type that’s
a collection of primary and derived data types.

struct Info many_info[3] = {{"Alice", 25, "Somapah Road", 8, "Upper Changi"},
{"Bob", 22, "Somapah Road", 19, "Upper Changi"},
{"Michael", 30, "Another Road", 25, "East Changi"}};

for (int 1 = 0; i < 3; i++)
{
printf("Name: %s, age %d, area name %s, house number %d, district %s\n",
many_info[i].name, many_info[i].age, many_info[i].address.area_name,
many_info[i].address.house_no, many_info[i].address.district);

}

Here’s the output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
Name: Alice, age 25, area name Somapah Road, house number 8, district Upper Changi

Name: Bob, age 22, area name Somapah Road, house number 19, district Upper Changi
Name: Michael, age 3@, area name Another Road, house number 25, district East Changi
hatalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

Tips for neater code: use typedef. typedef is a keyword used in C language to assign
alternative names to existing datatypes. Its mostly used with user defined datatypes, when

18

50.005 C Basics for Babies

names of the datatypes become slightly complicated to use in programs. So in the example
below, we can rename struct Info into just InfoData so that things look neater:

typedef struct Info InfoData;

InfoData many_info[3] = {{"Alice", 25, "Somapah Road", 8, "Upper Changi"},
{"Bob", 22, "Somapah Road", 19, "Upper Changi"},
{"Michael", 30, "Another Road", 25, "East Changi"}};

for (int 1 = 0; i < 3; i++)
{
printf("Name: %s, age %d, area name %s, house number %d, district %s\n",
many_info[i].name, many_info[i].age, many_info[i].address.area_name,
many_info[i].address.house_no, many_info[i].address.district);

}

The output is of course the same as the above.

More about Structure Size

Up above, we say the structure size is roughly the sum of its members, but may not be
exact. The members of a struct are allocated as contiguous blocks of memory. However,
remember that the size of an int is 32-bit, float is 32-bit and a char is 8-bit. However in many
32-bit machines, you cannot retrieve different parts of words. So what happens if you have
3 chars and 1 float inside a struct? The total number of “bytes” used is 1 byte each for each
char and 4 bytes for a float = 7 bytes. Just like playing tetris, the size of the struct depends
on the order of declaration of the attributes.

The compiler will pad unused bytes accordingly.

We leave it up to you to figure this out by yourself using this toy example:

#include <stdio.h>
#include <string.h>

struct structurel
{
int id1;
int id2;
char name;
char c;
float percentage;

3
struct structure2

{

int id1;
char name;
int id2;

19

50.005 C Basics for Babies

char c;
float percentage;
s
int main()
{
struct structurel a;
struct structure2 b;
printf("size of structurel in bytes : %d\n",
sizeof(a));
printf ("\n Address of id1l Ox%11x", &a.idl);
printf ("\n Address of id2 = Ox%11x", &a.id2);
printf ("\n Address of name Ox%11x", &a.name);
printf ("\n Address of c ox%1l1x", &a.c);
printf ("\n Address of percentage = @x%11x",
&a.percentage);
printf(" \n\nsize of structure2 in bytes : %d\n",
sizeof(b));
printf ("\n Address of id1l Ox%11x", &b.id1l);
printf ("\n Address of name = Ox%11x", &b.name);
printf ("\n Address of id2 = Ox%11x", &b.id2);
printf ("\n Address of c ox%11x", &b.c);
printf ("\n Address of percentage = @x%11lx\n",
&b.percentage);
return 0;

The output is:

natalieagus@Natalies-MacBook-Pro-2 Desktop % ./out
size of structurel in bytes : 16

Address of idl Ox7ffeedo@aas8
Address of 1id2 Ox7ffeed6@aadc
Address of name Ox7ffeed6@aa50
Address of c Ox7ffeed6@aa51
Address of percentage = @x7ffeed6@aa54

size of structureZ in bytes : 20

Address of idl Ox7ffeed6@aa30
Address of name Ox7ffeed6@aa34
Address of 1id2 Ox7ffeedb@aa38
Address of c Ox7ffeedb@aa3c
Address of percentage = @x7ffeed6@aa4d
natalieagus@Natalies-MacBook-Pro-2 Desktop %

20

50.005 C Basics for Babies

Learning Points

Declare arrays, modify arrays

Print strings, create and modify strings

Pointers data type: difference between addressing and content
Addressing in arrays and 64 bits system

Declaring structs, initializing and changing its values

o0 N =

Part 4: Loops and lterations

Loops and iterations can simply be done in C using the for-loop and while-loop, just like any
other language. There’s really nothing fancy in here.

float array_floats[8];

for (int i = 0; i<8; i++){
array_floats[i] = (float) i/8;
printf("%f, ", array_floats[i]);

)
printf("\n");

int i = 0;

while(i < 8){
array_floats[i] += 0.5f;
printf("%f, ", array_floats[i]);
i ++;

}

printf("\n");

array_floats[i] -= 0.5f;
printf("%f, ", array_floats[i]);
i ++;

}while(i<8);

printf("\n");

Here’s the output for sanity check:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
0.000000, ©.125000, 0.250000, ©.375000, @.500000, 0.625000, @.750000, 0.875000,

©.500000, ©.625000, 0.750000, ©.875000, 1.000000, 1.125000, 1.250000, 1.375000,
0.000000, ©.125000, 0.250000, ©.375000, @.500000, 0.625000, ©.750000, 0.875000,
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %

The only new thing is the do-while loop. Unlike the while-loop, the do-while loop executes
the body at least once, since it doesn’t perform check first. It might be handy in some
situations, but most of the time it doesn’t make much difference in terms of output if you
meant for your while loop to be executed at least once.

21

50.005 C Basics for Babies

In terms of execution time, the do-while loop might be a little faster. In the code above, the
check i<8 is done exactly 8 times in the do-while loop, but it is done 9 times in the
while-loop.

You can also break out of the loop using the keyword break.
What about variable initialization inside loops? For example, compare the two:
for (int i = @; 1<128; i++){

char ¢ = i;
printf("%c ", c);

char c;

for (int i = @; 1<128; i++){
€ = g
printf("%c ", c);

}

printf("final c: %c.\n", c);

The difference between the two for-loops is the char c initialization. It is reinitialized in each
loop for the first one, but initialized only once in the second loop. It might seem like the
second loop is more efficient, but it does not make any much difference with modern
compilers, since it is able to optimize the code above. In fact, the code above is safer
because the scope of each variable is limited for within that ONE loop only.

Learning Points

Three ways to perform loops: for-loop, while-loop, do-while loop

Do-while loops execute the body at least once because it performs checks after
break loops, or continue (same like Java, Python)

Scope of loops for variables initialized inside or outside the loop

PoODM=

22

50.005 C Basics for Babies

Part 5: Functions

The functions in C must be declared first before being utilized, so that the compiler knows
the return type. For example, such usage:

int main(int argc, char **argv)

{
float output = square(3.f);
printf("Output is %f \n", output);

float square(float a){
return a*a;

Results in compilation error:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % gcc cclass_partl.c -o out
cclass_partl.c:179:20: warning: implicit declaration of function 'square® is invalid in C99 [-Wimplicit-function-declaration]

float output = square(3.f);
A

cclass_partl.c:184:7: error: conflicting types for 'square’
float square(float a){
A

cclass_partl.c:179:20: previous implicit declaration is here
float output = square(3.f);
A

1 warning and 1 error generated.
This is because the compiler doesn’t know the return type of square, so it will set it as an
int by default. Then later on when you declare it as float return type, the error is
generated.

Obviously if you try to call a function that does not exist there’s the linker error because the
compiler doesn’t know where does this function comes from. For example calling this
functionl() when you haven’t implemented it:

functionl();

Results in such error:
Undefined symbols for architecture x86_64:
"_functionl", referenced from:
_main in cclass_partl-b7e5ac.o
1d: symbol(s) nhot found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
natalieagus@Natalies-MacBook-Pro-2 (-Class Codes %

The correct way is to declare your function first in the header file:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define BUFFERSIZE 1024
float square(float a);

23

50.005 C Basics for Babies

And then implementing it in the .c file as above.

Otherwise, you need to implement the function ABOVE the main() declaration:

float square(float a){
return a*a;

}

int main(int argc, char **argv)

{
float output = square(3.f);
printf("Output is %f \n", output);

To be neat, it is recommended that you always declare your functions in the header
file and only implement those in the .c files. Also, declare your structs in the header
file.

To declare a function, you need to define the:
1. Return type
2. The type of each argument

For functions without any return type, we just define it as void. For example, add these to
your header file:

typedef struct Vector_Int
{

int x;

int y;

int z;

char name[64];
}Vector;

void print_vector(Vector input);

Implement the function in your .c file:

void print_vector(Vector input){
printf("{x:%d, y:%d, z:%d}\n", input.x, input.y, input.z);
}

And call it in the main function:

Vector vl = {3,7,10};

print_vector(vl);

We shall have the output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %

{x:3, y:7, z:10}

24

50.005 C Basics for Babies

As you can see in the given examples above for functions square and print_vector, C
functions can receive any primary or derived data type as argument.

The two examples of functions above receives argument by value and not by reference. To
understand this, suppose we want to implement another function that’s job is to zero all the
members of Vector. Declare this in the header file:

void clear_vector(Vector input);

And the implementation:

void clear_vector(Vector input){
input.x =
input.y =
input.z

Calling these in the main function:

Vector v1 = {3,7,10};
print_vector(vl);
clear_vector(vl);
print_vector(vl);

Results in:

natalieagus@Natalies-MacBook-Pro-2 (C-Class Codes % ./out
{x:3, y:7, z:10}

{x:3, y:7, z:10}

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

That is because the input vector is a new COPY of v1. Hence modifying input does NOT
affect v1. In order to return the cleared vector, you need to change the return type into
Vector:

Vector clear_vector(Vector input);

And the implementation:

Vector clear_vector(Vector input){
input.x = 0;
input.y =
input.z =
return input;

We call this in the main function:

Vector vl = {3,7,10};
print_vector(vl);

vl = clear_vector(vl);

25

50.005 C Basics for Babies

print_vector(vl);

We have the output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
{x:3, y:7, z:10}

{x:0, y:0, z:0}

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

Now while this works, it is NOT efficient. We require creation and destroy of memory
space during runtime. If we just want the function to modify the created structure or array,
then we are better off by creating a function and passing its argument by reference. Add
this method into the header file:

void clear_vector_byreference(Vector *input);

And implement it in the main function:

void clear_vector_byreference(Vector *input){
input->x
input->y
input->z

Note how to access the member of a pointer to a struct, we can use the arrow ->
instead of a dot.

And add these in the main function:

Vector v2 = {31,99,21};
print_vector(v2);
clear_vector_byreference(&v2);
print_vector(v2);

We have the similar output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % ./out
{x:3, y:7, z:10}

{x:0, y:0, z:0}

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

However, the difference becomes clear if we print the address of the members of input, and
compare it with the address of the members of v1 and v2. Add the address print statement

on the functions:
ector clear vector(Vector input){

printf("Address of clear_vector input members: Ox%1llx, Ox%llx, 0x%llx\n", &input.x,
&input.y, &input.z);

26

50.005 C Basics for Babies

input.x =
input.y =
input.z
return input;

void clear_vector_byreference(Vector *input){

printf("Address of clear_vector_byreference input members: Ox%1lx, Ox%1llx, ©x%llx\n",
&input->x, &Iinput->y, &input->z);

input->x =

input->y =

input->z =

And call these in the main:

Vector vl = {3,7,10};

printf("Address of vl members: Ox%11lx, Ox%1lx, 0x%11lx\n", &vl.x, &vili.y, &vl.z);
print_vector(vl);

vl = clear_vector(vl);

print_vector(vl);

Vector v2 = {31,99,21};

printf("Address of v2 members: Ox%11lx, Ox%1lx, 0x%1lx\n", &v2.x, &v2.y, &v2.z);
print_vector(v2);

clear_vector_byreference(&v2);

print_vector(v2);

The output is:

natalieagus@atalies-MacBook-Pro-2 C-Class Codes % ./out

Address of vl members: @Ox7ffeef@3c978, @x7ffeef@3c97c, Ox7ffeef®3c980

{x:3, y:7, z:10}

Address of clear_vector input members: @x7ffeef@3c820, Ox7ffeef@3c824, Ox7ffeef@3c828
{x:0, y:0, z:0}

Address of v2 members: Ox7ffeef@3c8d8, Ox7ffeef@3c8dc, Ox7ffeef@3c8ed

{x:31, y:99, z:21}

Address of clear_vector_byreference input members: Ox7ffeef@3c8d8, @x7ffeef@3c8dc, Ox7ffeef@3c8ed
{x:0, y:0, z:0}

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %

As you can see, the clear_vector’s input members is located in totally different address
as v1’s. To be specific, they’re created in the stack space of clear_vector function.
However for clear_vector_byreference, this isn’t the case. We save on memory
read/write and stack space if we use passing arguments by reference.

When to pass arguments by value and when to pass arguments by reference?
1. Depends on the size of the arguments. For primary data types and small structs, it
doens’t make much difference
2. It makes a lot of difference in runtime for deeply recursive functions and large structs

27

50.005 C Basics for Babies

Learning Points

1. Declare functions and structs first in the header files, before using it in the .c files
2. Function declarations must include return type and argument types
3. Note the difference between passing argument by value vs by reference

Part 6: Dynamic Memory allocation

The final part of this tutorial is to introduce you to C’s dynamic memory allocation using
malloc or calloc. This memory is allocated in the process’ heap (and not stack), and
therefore it persists even after the caller function exits. You need to explicitly free the
memory when it is no longer needed, otherwise it will populate your heap space
unnecessarily.

Global variables, static variables and program instructions get their memory in a
permanent storage area whereas local variables are stored in a memory area called stack.

See the figure below for basic memory space of a process:

Local Variable]. stack

Free memory }- Heap

Global variable

Permanent
Program Ercram
Instructions 9
area
static
variable

The memory space between the stack and permanent storage area is known as the Heap
area. This region is used for dynamic memory allocation during execution of the program,
while the permanent storage area stays the same. The size of the heap keeps changing.

The difference between global, static, and local variables:

1. Global variables are visible in the entire process (across different .c file modules). In
the other modules, we can access the global_variable declared once in any of
the .c files and accessed by all others using the extern keyword. This is a more
advanced knowledge and not required for our course. If you’re interested, you
can read more about it here.

2. Static variables are only visible within the module (.c file) itself

3. Local variables are only visible within the function scope

28

http://www.theunixschool.com/2010/05/how-to-use-extern-variable-in-c.html

50.005 C Basics for Babies

The simple program below shows the difference. Add these to a header file:

int global _variable;

void test_global(void);

int test_static(void);
int test_local(void);

And these implementations to the .c file:

int test_static(void){
static int static_variable = 20;
static_variable += 1;
return static_variable;

int test local(void){
int local_variable = 20;
local_variable += 1;
return local_variable;

void test_global(void){
global variable ++;

Then call them in the main function:

printf("The global variable is %d \n", global variable);
test_global();

printf("The global variable is now %d \n", global variable);
printf("The static variable is %d \n", test_static());
printf("The static variable is %d \n", test_static());
printf("The local variable is %d \n", test_local());
printf("The local variable is %d \n", test_local());

We have the output:

natalieagus@Natalies-MacBook-Pro-2 C-Class Codes %
The global variable 1s 10

The global variable is now 11

The static variable 1is 21

The static variable 1is 22

The local variable is 21

The local variable is 21
natalieagus@Natalies-MacBook-Pro-2 C-Class Codes % I

As you can see, global variables are typically defined in the header file, and can be
accessed anywhere. Static variables can be defined within functions and still are visible

29

50.005 C Basics for Babies

outside of it. Calling test_static the second time skips the initialization of static_variable.
Hence we have the value of 22 in the second call.

We can also declare static arrays, but we cannot have dynamic memory allocation. For
example, as shown in the_earlier part, an attempt to compile this,

int test_static(void){
static int static_variable = 20;
static_variable += 1;

static int static_array[static_variable];
return static_variable;

Results in the error:
A

cclass_partl.c:215:16: error: variable length array declaration cannot have 'static’ storage duration
static int static_array[static_variable];

So in order to have an array which size is dynamic: meaning that its size is determined
later during runtime execution, we need to use malloc (or calloc):

int buffersize;

printf("Enter total number of elements: ");

scanf("%d", &buffersize);

int *x = (int*) malloc(sizeof(int)*buffersize);

printf("Memory address allocated by malloc starts at @x%11lx\n", x);
printf("This pointer is stored at address Ox%1lx\n", &x);

for (int i = 0; i<buffersize; i++){
x[i] = 1i;

printf("Enter additional number of elements: ");
scanf("%d", &buffersize);

int *y = realloc(x, buffersize);
printf("Memory address allocated by realloc starts at 0x%1lx\n", y);
printf("This new pointer is stored at address @x%1lx\n", &y);
for (int i = ©; i<buffersize; i++){
printf("Original content element %d is %d \n", i, x[i]);
x[1i] += i;

30

50.005 C Basics for Babies

The output is:

natalie_agus@atalies-MacBook-Pro C-Class Codes % ./out
Enter total number of elements: 3

Memory address allocated by malloc starts at @0x7fdd3fd00ooo
This pointer is stored at address @x7ffee23329f@

Enter additional number of elements: 5

Memory address allocated by realloc starts at 0x7fdd3fd00ooo

pointer is stored at address @x7ffee23329e0

content element @ is @

content element 1 is 1

content element 2 is 2

content element 3 is @

content element 4 is ©
natalie_agus@atalies-MacBook-Pro C-Class Codes % |

Let’s digest this a little bit:
1. The program asks for the user to key in array size, initially it was 3.

2. Then it allocates memory using malloc(total byte size), hence the argument is:
o sizeof(int) * buffersize
o malloc returns a generic pointer to this allocated place in the heap
o We need to type cast it
o Note that malloc is NOT a system call. It is C standard library, and the
memory is allocated in the process’ local space (VM space)

3. The address for the array is initialized at @x7fdd3fdeeeee. The pointer to this
address is stored at 9x7ffee23329f0.

4. Afterwhich, we resize the array into size 5 using pealloc(original_pointer,

new_size):
o If new_size is smaller than original size, then the remainder is automatically
freed
o Otherwise, realloc will increase the size of the memory allocated for the
array

The new array location may or may not overlap the old array

realloc migrates the old value of the array to the new one with the new size
The example above shows that the new array location starts at the same
place as the old one, that is @x7fdd3fdeeeee, but it may not be the same as
well depending on whether there’s enough space in the heap.

5. It seems like the two new locations at index 3 and 4 has initial values of 0. Note that
this is NOT always the case for malloc. Malloc can initialize the array with
garbage values as well. You might want to use calloc(number, sizeof(type))
for auto initialization to zero. Otherwise with malloc you need to loop through the
array after initialization.

6. Note that the memory block allocated by the malloc or calloc MUST BE EXPLICITLY
freed using free(pointer). Otherwise, your program might run out of heap space.

31

50.005 C Basics for Babies

The nice thing about malloc is that it persists outside the scope of the calling function. As a
demonstration, add this declaration in your header file:

int* test_malloc(int size_array);

Add this implementation in the .c file:

int* test_malloc(int size_array){
int *x_local = malloc(sizeof(int)*size_array);
for (int i = ©; i<size_array; i++){
x_local[i] = i*i;
}
printf("Local pointer is at address ©x%11lx\n", &x_ local);
printf("Pointer is pointing to address 0x%11x \n", x_local);
return x_local;

Then call the function in your main file:

int *pointer = test_malloc(10);
printf("Returned pointer is at address 0x%llx \n", &pointer);
printf("Pointer is pointing to address ©x%11lx \n", pointer);

for (int i = 0; i<10; i++){
printf("%d ", pointer[i]);

)

printf("\n");

free(pointer);

The output is:

natalie_agus@atalies-MacBook-Pro C-Class Codes %
Local pointer is at address @x7ffee9f@c9co
Pointer is pointing to address 0x7fad41e402670

Returned pointer is at address 0x7ffee9f@c9f8
Pointer 1is pointing to address 0x7fa4l1e402670
149 16 25 36 49 64 81
natalie_agus@atalies-MacBook-Pro C-Class Codes % D

Notice how the array is initialized inside the function test_malloc. However, in the main
function, we can still print out its content and the array persists. It is located at an address
starting at ox77fa41e402670. The address of the pointer pointing to 0x77fa41e402670
varies (was 0x7ffee9f0c9co, then changed to ox7ffee9f0c9f8), as it was the local
variable inside test _malloc.

Another common way of using malloc is to pass the pointer (returned by malloc) to

another function to modify. This is very similar to the example in this part (pass by
reference).

32

50.005 C Basics for Babies

Declare this function in the header file:

void modify array(int* array, int array_size);

Implement this in .c file:
void modify_array(int* array, int array_size){
for (int i = ©; i<array_size; i++){
array[i] += i;

And call it in the main function:

int buffersize;
printf("Enter total number of elements: ");
scanf("%d", &buffersize);

int *x = (int*) malloc(sizeof(char)*buffersize);

printf("The original array value is : ");
for (int i = 0; i<buffersize; i++){
x[i] = i;
printf("%d ", x[i]);
}
printf("\n");

modify array(x, buffersize);

printf("The new array value is : ");

for (int i = @; i<buffersize; i++){
printf("%d ", x[i]);

}

printf("\n");

free(x);

The output is as expected, where the array is modified by the function:

natalie_agus@atalies-MacBook-Pro C-Class Codes % ./out
Enter total number of elements: 5

The original array value is : 6 1 2 3 4
The new array value is : 0 2 4 6 8
natalie_agus@atalies-MacBook-Pro C-Class Codes % D

33

50.005 C Basics for Babies

Learning Points

Dynamically allocate memory using malloc or calloc
Resize the memory using realloc during runtime
Difference between static memory vs heap vs stack
Freeing memory after usage

Scoping between functions

Summary

Congratulations. You have completed the basic training for C. Next, we will explore more
advanced topics such as function pointers, making various system calls in C, error handling,
File 1/0, process control, as well as inter-process communication means. If you’d like to test
your knowledge up until now, head to e-dimension and do the quiz (Part 1 and Part 2). The
grade is not going to be computed for your overall grade.

Here’s some pointers that might be useful to tie up everything:
1. Be careful when declaring pointers and arrays. Remind yourself on what each
declaration method means and its scope.

Within a function, a static variable is one whose memory location is
preserved between function calls. It is static in that it is initialized
only once and retains its value between function calls.

example,

int function1(){
ic int x = 5;
X += 1;
printf("value of x : %d \n", x);
>turn 0;

int main(){
functionl();
functionl();
functionl();

}

At the end of the third call of function, the final value of x is 8.

2. Note the difference between initializing & declaring variables inside or outside of a
function. For statically allocated memory location within a function, its scope
persists. If you invoke functionl() below, you can still print the string “HELLO”
pointed by sentence. Also, not all static allocated memory is read-only. ‘Read-only’
is simply a flag for constants so that no instructions can modify during runtime.

34

50.005 C Basics for Babies

int x[100];
int yl[1e0];
char xsentence "Hello world";

charx functionl(){
int z[100];

char xsentence = "HELLO";
char sentence2 "WORLD" ;
sentence;

This code will compile without warning, whereas if you return sentence2 it will

warn you that:

est.c:8:12: address of stack memory associated with local variable 'sentence2’ re
urned [-Wreturn-stack-address]

return sentencez2;
~

35

	C Basics for Babies
	Installing C
	Ubuntu
	macOS (BigSur)

	Hello World!
	
	Learning Objectives
	Part 1: .c and .h file extensions
	Learning points

	Part 2: Primary Data Types
	Learning Points

	Part 3: Derived Data Types
	Arrays
	Pointers
	Strings
	Structures
	
	More about Structure Size

	Learning Points

	Part 4: Loops and Iterations
	Learning Points

	
	Part 5: Functions
	Learning Points

	Part 6: Dynamic Memory allocation
	Learning Points

	Summary

