
Patient corrections reference server

Note: in the middle of an update to the UI (specifically implementing separate Patient & EHR
perspectives) so the documentation may not match the UI

Summary

Architecture
Endpoints

Using the API
A client using the API

Basic flow
Finding conversations
Getting Task versions

Server interaction
Direct POST

User Interface
Mocking a corrections conversation
Main UI
Task History
Debugging

API details
POST Communication API

.about is absent

.about is present
GET Communication API
PUT Task API

Design work
$process-medRecCxReq

Examples
Simple bundle with Communication
Bundle with contained resources

Things I plan to do sometime
Functionality
Subscriptions

Summary
A reference implementation that implements the Patient Corrections IG

Has both server (EHR end) and a client (patient end) User Interface

Expose a FHIR API (with some business logic) and UI to support patient correction requests.

API endpoint: http://corrections.clinfhir.com/fhir/

2 API’s with business logic:

POST /Communication/
$process-medRecCxReq

Accepts a Bundle that must at least contain a
Communication resource.

If the ‘about’ element of the
Communication is empty, then save the
communication and create a Task
resource.

Otherwise save the Communication
and update the task

Returns a Communication

GET /Communication?
about={communicationId}

Implement the ‘about’ query that returns all
Communications that have an about reference
to the initial Communication.

Other API’s exposed that are proxied to the back end server

GET /Task?params Calls the back end server with the params
and returns the response.

Most commonly useful when querying tasks
for patients

GET /Task/{id}/_history Returns a history bundle for the task

Currently only accepts Json

http://build.fhir.org/ig/HL7/fhir-patient-correction/specification.html

In this document:

●​ Patient is the person initiating the correction request, and responding to queries for
further info. The term ‘client’ is also used. In theory this could be someone acting ‘on
behalf of’ but this is not currently supported

●​ EHR is the system that the correction request is being made of
●​ The ‘trail’ represents the resources that are involved in a particular correction request,

including their change over time.

Design work
My design notes

Use Cases

Patient submits Correction request
●​ Client app uses the $process-medRecCxReq operation to submit request bundle

containing (at minimum) a Communication resource
●​

EHR requests info

Patient responds to info request

EHR Accepts correction request

EHR Rejects correction request

Client (Patient) API

$process-medRecCxReq
Used by the client to send information to system
Is a bundle with one Communication and any other resources
​ ? add a Patient as well? So the server can locate local record

Proposed behaviour to support denial disagree

-​ Uses transaction bundle - alternative is individual save of resources on server

●​ Receive bundle
●​ Extract Communication

○​ Copy other resources to transaction bundle
●​ Validate Communication

○​ Reject if invalid or missing
●​ If Communication is medReqCxReq​ (processing the original request)

○​ If communication.about is empty (a new request)
■​ Create Task

●​ .code -> medRecCxReq
●​ .status -> ready
●​ .businessStatus ->new
●​ .intent -> order
●​ .focus -> communication
●​ .description -> communication.topic or

communication.payload.contentString
●​ .for -> communication.subject
●​ .requestor -> communication.requestor or communication.subject
●​ .owner -> communication.recipient
●​ .input -> communication

■​ Update communication.about -> task
■​ Copy task & communication to transaction bundle
■​ POST transaction bundle & return

○​ If communication.about is not empty (comment of original request
■​ Validate
■​ Retrieve task

●​ If Communication is medReqCxDenialDisagree (disagree with denial)
○​ Retrieve the .about Communication
○​ If that communication has a category of medReqCxReq (ie it was the original

request)

■​ Retrieve the Task that the .about communication refers to (this is the
original Task

■​ Create a new Task
●​ Set .reasonReference -> original Task
●​ Set .input to the newly received communication
●​ Set the newly received communication.about -> new task

■​ Add new task to transaction bundle
■​ Add updated newly received communication to bundle
■​ POST transaction bundle & return

○​ If that communication has a category of medReqCxDenialDisagree (ie it is
related to the disagree chain)

■​ Add updated newly received communication to bundle
■​ POST transaction bundle & return

Amendment accepted
Performed by EHR against the original request

●​ Retrieve primary (original) Communication
●​ Retrieve Task

○​ From Communication.about
●​ Create Communication

○​ .about -> original Communication
○​ Save communication

Questions
Issue that arose during development

$process-medReqCxReq operation
How much detail in the spec. Can be complex as all interaction is through that operation (see
description lower down).

How much Is part of the spec & how much vendor dependant

Other endpoints
Which other endpoints are part of the IG - or implementation dependant

How should Task status be managed
●​ In some cases automatically as Communication is processed. Eg Task is created

(status=new), but what about transition to ‘in progress’
●​ In some cases manually - eg when EHR accepts / denies - closing task

Confirm business statuses
When apply & relationship to task.status

Disagree Denial - can this be a conversation or only 1?

Architecture

Is a facade against a local instance of a HAPI server.

Endpoints

Url Purpose

http://corrections.clinfhir.com/ The url of the User Interface to the app

http://corrections.clinfhir.com/fhir/ The root endpoint for the API exposed by
the reference app. Details are described
below

http://corrections.clinfhir.com:8091/baseR4/ The endpoint of the FHIR server that the
reference app uses. Should really only
query to this endpoint - making updates can
upset the overall flow of the process.

An exception will be to find (or create) a
Patient resource to use

Endpoint access may be restricted

Using the API

A client using the API
Some notes for the implementer

Basic flow

1.​ Find to create a patient on the FHIR server (http://home.clinfhir.com:8054/baseR4/). It is
useful to set the identifier to facilitate debugging. As the custom ‘about’ query will only
work if a patient has 50 or fewer Communication resources, using a different patient for
each test run is advisable. I’ll remove this limitation eventually

2.​ Create a Communication resource referencing that patient and with the .about element
missing. Details of the elements are given below.

3.​ Add the Communication to a bundle, along with any other resources
4.​ POST the Bundle to the API endpoint (http://clinfhir.com/fhir/Communacation). Check

the response - errors will be in an OperationOutcome. Some validation of the
Communication is performed.

5.​ Use the UI (http://clinfhir.com/taskViewer.html) to view the Task created by the API as
well as the Communication. Alternatively, query the FHIR server directly. There is alos a
log view that may be helpful - see below.

http://home.clinfhir.com:8054/baseR4/
http://clinfhir.com/fhir/Com

6.​ Use the about query to poll for Communication resources. If the recipient is the patient,
then it is a request for info (RFI). You can use the UI to generate the RFI Communication
- see below.

7.​ To generate the response to the RFI, create an appropriate Communication and POST
to the API endpoint. The .about element must be set to the initial Communication.

8.​ Repeat steps 3 -> 5 as required

Completing the overall correction request is done through the UI. The Task needs to be updated
directly.

Finding conversations
If the client wishes to locate all the individual ‘conversations’ that they have initiated, the easiest
is to query for Tasks for that patient. This works as the Task is automatically created when the
first Communication for that conversation (.about is absent) is received.

GET Task/subject={patientId}

Getting Task versions
Each time there is an interaction with the API (ie posting a bundle containing a Communication
at least to the operation, the associated Task resource is updated (Currently there is only a
single Task per conversation as the ‘challenge’ workflow is not implemented).

To get a list of all the updates to the Task resource, use the version query:

GET Task/{id}/_history.

You will have needed to get the task id via the earlier query

Server interaction
Ie representing the request fulfiller. There are 2 options - the UI or direct POSTing of
Communication resources

Direct POST
POST an appropriately crafted resource to the API. It’s up to you to set the elements correctly.
Assuming the POST is accepted - and all the references are correct (especially the .about
reference to the primary Communication), the Communication should be visible in the UI.

You can also access the FHIR server (http://home.clinfhir.com:8054/baseR4/) directly for
debugging.

User Interface

Mocking a corrections conversation
You can use the UI to mock a corrections conversation between patient and EHR. The easiest
way is to have the UI running on 2 browsers (can be in the same machine) with one browser
representing the patient (and using the patient perspective in the UI) and the other the EHR
perspective

You will need to refresh the browser manually to see the updated communications - plan is to
automate this once the pub/sub functionality is implemented

Main UI

This is intended as an ‘administrative’ interface to the API. It has 2 key functions

●​ Displaying the resources that have been received and stored within the FHIR server.
Kind of like the UI that an administration in the EHR might use to process correction
requests.

●​ Creating 2 Communication resources, which are sent to the same API as external
systems use. There are 2 sub-functions:

○​ Those that the administrator would do - creating a query for further information
and replying (if appropriate) to the responses to those requests.

○​ Actions ‘on behalf’ of the patient. Although entered through this UI, they are
created as if the patient had entered them (you could imagine that the patient
asked the administrator to enter them on their behalf - eg entering data into the
system from a phone call). This includes:

■​ Creating a new correction request
■​ Responding to a request for further info.

UI Address: http://clinfhir.com/taskViewer.html

The main screen of the UI presents the currently active Tasks (code = medRecCxReq, status is
not completed) in a list to the left. Selecting a Task will display the Communifactions associated
with the Task to the right.

The UI is, in effect, a Task centered system as a new Task is created for each new correction
request (a Communication with .about absent)

http://clinfhir.com/taskViewer.html

Right now, all corrections are displayed. Eventually, different ‘EHR’s will be supported - allowing
Correction requests to be targeted at different Organizations.

Main controls / tabs:

●​ Selecting a resource will display the Json to the right
●​ The ‘reply’ button that is to the right of a Communication will prompt the user for some

text, then create a new Communication (via the API). The nature of the Communication
depends on the sender

○​ If the sender is the EHR (ie from the organization) then the user is in the role of
the patient - they are replying to a Communication

○​ If the sender is the patient (ie this is a response to an RFI) then the user is in the
role of the EHR administrator

●​ The ‘Request more information’ button will create the RFI Communication - sender is the
EHR, recipient the patient

●​ The ‘Close Task’ button will generate the Communication and set the task status to
‘completed’. This is an EHR role. A Communication is generated and saved through the
usual API, and the Task is updated using a PUT to the Task endpoint.

●​ The graph tab displays a clinFHIR style graph of the resources in the interaction -
including the patient. It is intended to show the references between the resources
associated with this Task.

Note that the UI isn’t that great at refreshing (and can take a few seconds to do so) - just refresh
the page if updates don’t seem to be there.

There is also currently a limit in the number of tasks that are shown in the left panel -
only 50 Active and Completed Tasks are displayed. Working on that...

Task History
The Task history tab displays the history of changes to the currently selected Task. Each
Communication will result in an update to the Task, so it’s a useful timeline of activity. For each
version the Task Json and the Communication json that caused that version to be created is
shown (the link is Task.focus). Click the link to refresh the display.

Debugging
The UI has a log option that is displayed by clicking the ‘View Log’ link to the upper right.
Currently the logging is only done for bundles sent to the process-medRecCxReq operation, but
more may be added later.

The last 30 logs are displayed, with a list to the left. Selecting the log displays details to the
right. The list also shows any identifier in the Communication - this is to enable a vendor to ‘tag’
their resources so they can be (relatively) easily found.

Each log entry shows:

●​ The Bundle that was received by the operation
●​ The transaction bundle that is send to the FHIR server after business logic has been

applied - eg the Task created
●​ The status of the transaction bundle processing

API details

POST Communication API
Both client and EHR can POST to this API . In this application the API is not simply ‘exposed by’
the EHR - rather it is an external entity with embedded business logic that both systems update.

Processing depends on the value of the .about element.

If the .about is absent, then it indicates a new request for a correction (which will
generally be made by the patient), and will result in the creation of a Task to manage
interactions (exchange of Communication resources) concerning the correction request.
This Communication resource will become the primary Communication for all
subsequent interactions about this request.

If .about is present, then it indicates that this Communication is part of the overall
request - either a request for more information from the EHR, or from the Patient in
response to such as request (or just supporting information)

Overall process of the API is:

●​ The bundle is received and parsed into Json. If this fails an OperationOutcome (OO) is
returned. The only parts of the incoming bundle that are examined are the entry
elements - other elements are ignored. This an incoming bundle only needs the entry
elements (containing the .resource element). The entry.request element is ignored.

●​ A log entry is made with the submitted bundle. This is displayed in the log view of the UI.
A correlationId is created, to allow this log to be associated with the log of the transaction
sent to the fhir server (described shortly)

●​ If the bundle is not a FHIR bundle, the operation fails and an OO is returned
●​ A separate transaction bundle (the server bundle) is created that will be sent to the

server if the request is valid.
●​ The Communication resource is located in the bundle. If there is none present the

operation fails and an OO is returned. Other resources in the bundle are added to the
server bundle and will be sent ‘as is’ to the server

●​ The contents of the Communication are validated (using specific code) - primarily those
defined by the IG and/or needed for the API processing

●​ The Communication.about element is examined. Processing then forks depending on
whether this is present or absent - details given next. In both cases, the server bundle is
populated with the Communication and optionally the Task resources and sent to the
FHIR server. A log entry for the server bundle is added to the log, including the
correlation id.

●​ The status code from the FHIR response is examined:
○​ If it is 200, then the Communication resource is returned
○​ Otherwise, the FHIR server response - generally an OO - is returned.

.about is absent

The Communication resource will be assigned an id and saved on the server. Element values
will be used to create the Task resource.

The Communication resource: (profile)

This will become the primary Communication for this trail

Element Description

id Will be ignored if present (shouldn’t be on a POST). The ids are assigned
by the API

status Fixed to ‘completed’

identifier Not processed (just saved). Useful if you want to retrieve the
communication directly from the FHIR server (as the id is created by the
API)

The identifier is also displayed in the log, to make it easier to find a log
entry from a particular vendor.

category Currently fixed to medRecCxReq.When ‘log disagreement’ is implemented
there will be another.

reasonCode Also fixed to medRecCxReq.

subject The patient who the correction is about. This patient needs to exist on the
FHIR server first.

sender Also the patient.

payload The message. Currently this must be in contentString.

recipient Who the request is for

sent This is set on the server to avoid timezone issues

topic If present, will be the description in the Task. If absent, task.description
will be from the payload contentString.

about This is empty (or ignored by the server) in the submitted communication .
It will be set as a reference to the Task that is created.

inResponseTo Ignored when creating a new correction (.about is empty). For
communications where .about is populated, it indicates that the
communication is in response to a query for further information.

http://build.fhir.org/ig/HL7/fhir-patient-correction/StructureDefinition-patient-correction-communication.html

Other elements are simply saved on the FHIR server

When the Communication is processed, the API will add the .about element as a reference to
the created Task

The generated Task resource (profile)

This is automatically created by the API

Element Description and source

code Currently fixed to medRecCxReq

status Fixed to ‘ready’

businessStatus Set to http://clinfhir.com/cs/corrections|for-initial-review

intent Fixed to ‘order’

focus A reference to the Communication that resulted in its creation

description Copied from Communication.payload.contentString

for Copied from Communication.subject

requestor Copied from Communication.requestor, or from Communication.subject if
requestor is absent.

owner Copied from Communication.recipient. Need to add a default

input A reference to the primary communication

This Task will be updated as overall processing of the correction request proceeds. It will be
updated each time a new Communication is is received and the focus element will be a
reference to that Communication (used when displaying the timeline)

.about is present

The about element is assumed to refer to the primary communication in the corrections trail. Ie
no ‘nesting’ of communication resources - every communication in the trail will refer to the same
primary communication.

The associated Task will be updated from the contents of the communication. This is applied in
the order that the communication is received. The task is retrieved by first retrieving the primary

http://build.fhir.org/ig/HL7/fhir-patient-correction/StructureDefinition-patient-correction-task.html

Communication (which is the contents of the .about element, and then retrieving the Task by
examining the .about element of the primary Communication.

The following tables show the Task updates that are performed - the actual communication will
be saved directly in the FHIR server.

Notes about the communication resource:

Element Description

inResponseTo Indicates that this communication is responding to another
communication - presumably sent by the EHR requesting further
information - though, in theory, it could also be a response by the EHR to
a communication created by the patient. (It won’t be a primary
communication as the .about element will be present)

status

recipient Set to the EHR

Notes about the updates made to Task (resulting in a new version)

Task Element Description & action

businessStatus If communication.inResponseTo is set, then we assume that it is in
response to a request for more info so set to:

http://clinfhir.com/cs/corrections|reply-received

Otherwise, assume it is a request for more info so set to:

http://clinfhir.com/cs/corrections|waiting-for-info

status Fixed to ‘in-progress’

focus A reference to the communication

GET Communication API
The only query (apart from the GET a single communication) implemented is the ‘about’ query
which returns all the communication resources that have a reference to the primary
communication resource. (It is always possible to make other queries directly to the underlying
FHIR server if you need to).

Signature:

GET [host]/Communication?about={primary communication id}

The purpose of the query is to allow the client to retrieve all communication resources
associated with the primary one - one may be a request for information (the .recipient element
will be set to the patient)

Question: How does the client determine which communication resources require a response? If
there are multiple communications then the .recipient alone won’t be enough…

Could an element on the ‘answer’ communication be updated by the app when saving? The
client could then use that.

Implementing a subscription would help, but likely won’t be enough...

As the underlying FHIR server doesn’t support this parameter, this is done by the app as
follows:

1.​ The communication resource (primary communication) that has the id of the about
parameter is retrieved

2.​ All the Communication resources for the patient are retrieved (based on the .subject
element)

3.​ The app iterates through all the resources to locate ones where the .about element
refers to the primary communication, and adds them to the bundle.

4.​ The Patient is added to the bundle
5.​ The bundle is returned

Todo: Add the recipient resources (?generally Practitioner) resources to the list as well

This approach does have the limitation that the patient can’t have more than 50
communication resources in total as that is the maximum number that the FHIR server
will return (without following the paging).

PUT Task API

The only use of this API is by the EHR to indicate that the correction thread has been finished
and the process is complete. (This may change when the ‘challenge’ is implemented).

Only done by the EHR

Generally only the status will be updated

Dev stuff
Current behaviour - not supporting denial disagree

●​ Receive bundle
○​ Reject if not bundle

●​ Create transaction bundle for server
●​ Iterate through bundle entry

○​ If Communication (1 only) extract as communication resource
○​ Copy others into transaction bundle - keep ids

●​ Extract communication .category
○​ Reject if absent

●​ Set communication .sent to local server time
○​ So consistent across timezones

●​ Validate other communication elements - using code - could use $validate against profile
○​ Reject if errors

●​ Create communication .id
●​ If communication.about is present

○​ Retrieve the primary task
■​ Get the primary Communication from the .about then the task from that

ones .about
○​ If the category is medRecCxReq

■​ Set task.status to ‘in-progress’ - is this the correct thing to do?
■​ Set task.focus to the incoming communication​
■​ Add to the transaction bundle as a PUT (will update the task on the server

○​ Add the communication to the transaction bundle
○​ POST the transaction bundle to the server and return the Communication

resource from the result
●​ If communication.about is absent

○​ Create a new task (with id) and set communication.about to reference it
■​ .code -> medRecCxReq
■​ .status -> ready
■​ .businessStatus ->new

■​ .intent -> order
■​ .focus -> communication
■​ .description -> communication.topic or

communication.payload.contentString
■​ .for -> communication.subject
■​ .requestor -> communication.requestor or communication.subject
■​ .owner -> communication.recipient
■​ .input -> communication

○​ Add communication to transaction bundle
○​ Add new task to transaction bundle
○​ POST the transaction bundle to the server and return the Communication

resource from the result
○​

Examples

Simple bundle with Communication

Assume all references exist on backend server

{

 "resourceType": "Bundle",

 "type": "collection",

 "entry": [

 {

 "resource": {

 "resourceType": "Communication",

 "status": "completed",

 "inResponseTo": [

 {

 "reference": "Communication/cf-1631656283330c"

 }

],

 "category": {

 "coding": [

 {

 "system":

"http://hl7.org/fhir/uv/patient-corrections/CodeSystem/PatientCorrectionTaskTypes",

 "code": "medRecCxReq"

 }

]

 },

 "about": {

 "reference": "Communication/cf-1631430208328c"

 },

 "subject": {

 "reference": "Patient/patchTest"

 },

 "recipient": [

 {

 "reference": "Organization/cmdhb"

 }

],

 "sender": {

 "reference": "Patient/patchTest"

 },

 "reasonCode": {

 "coding": [

 {

 "system":

"http://hl7.org/fhir/uv/patient-corrections/CodeSystem/PatientCorrectionTaskTypes",

 "code": "medRecCxReq"

 }

]

 },

 "payload": {

 "contentString": "yes I am"

 }

 }

 }

]

}

Bundle with contained resources

Things I plan to do sometime

Functionality

Test harness for server
​ Set of messages (communication resources) - send one, then query. repeat.

‘Rename’ comm to ‘messages’
​ Especially for patient

‘Threaded’ display for Communications
​ Tree type display

Remove ‘RFI’ button - can simply reply to the original Communication

Allow direct business status update
​ Get vs from IG

Support different organizations
​ Specify in recipient
​ Build org list from active comms - server function - getActiveOrgs

Make graph object movement sticky

Processing new request
​ Conditional update for patient

Creating a new correction request -

have separate top level tabs - patient/EHR view with customized layout - perspective
Patient tab

​ ​ Specify org (from active tasks)
​ ​ ​ Have lookup of endpoint - vDir

Allow attachments
Enter text
Subscribe to updates
​ Eg email or text message number to receive notifications
Need patient login
​ For now, just list of patients with active tasks
​ ​ ? a query to Task (active, subject) - active & closed
Specific display for messages
New messages for me (ie recipient = patient)
​ ?how to determine if already replied to?
​ ​ ?Reference to ‘replied’ to message (if it exists, you know it has

been replied to

EHR / System tab
​ Select org to display tasks for

Subscriptions

Set up minimal subscriptions server

	Patient corrections reference server
	Summary
	Design work
	Use Cases
	Patient submits Correction request
	EHR requests info
	Patient responds to info request

	Client (Patient) API
	$process-medRecCxReq
	Amendment accepted

	Questions
	$process-medReqCxReq operation
	Other endpoints
	How should Task status be managed
	Confirm business statuses
	Disagree Denial - can this be a conversation or only 1?

	Architecture
	Endpoints

	Using the API
	A client using the API
	Basic flow
	Finding conversations
	Getting Task versions

	Server interaction
	Direct POST

	User Interface
	Mocking a corrections conversation
	Main UI
	Task History
	Debugging
	API details
	POST Communication API
	.about is absent
	.about is present

	GET Communication API
	PUT Task API

	Dev stuff
	Examples
	Simple bundle with Communication
	Bundle with contained resources

	Things I plan to do sometime
	Functionality
	Subscriptions

