
EECS 376​
MIDTERM STUDY GUIDE 

by Evan Hahn, Scott Godbold, Cam Herringshaw, Stephen Rolfe, Zachariah Gerth (add your 
name if you helped!) 

Good luck on the test, everyone! 

Exam logistics 
●​ One side of a 8.5” × 11” piece of paper (Evan and Scott made this one) 
●​ In class 
●​ List of concepts: part 1, part 2 

At a high level 
There are many different computational models of computers, just like there are many 
mathematical models of physics and other stuff. These include finite automata and Turing 
machines, the two major parts of this exam. 

Deterministic finite automata 
Deterministic (DFA): each state must have exactly one transition arrow for every item in the 
alphabet, and it may only occupy a single state at a time. 

Formally described by the 5-tuple (Q, Σ, δ, q0, F): 

1.​ Q: a finite set of states. For example, if there are 3 states, you would have the set 
{q0,q1,q2}. 

2.​ Σ: a finite set called the alphabet, containing all symbols that automata accepts. For 
example, {0,1} could be the alphabet. 

3.​ δ: transition function. The domain (inputs) is Q × ∑ and the range is Q, which can be 
written as Q × ∑ → Q. 

4.​ q₀: Q is the start state. q₀ ∈ Q. 
5.​ F: set of accept states. Can be empty set. F ⊆ Q. 

http://cl.ly/1R1R3H1T1J3P
https://piazza.com/class#winter2013/eecs376/65
https://piazza.com/class#winter2013/eecs376/213


Here’s a DFA with the corresponding 5-tuple describing it: 

  

●​ equivalent statements about the set of strings A and machine M: 
○​ M accepts A 
○​ M recognizes A 
○​ A is the language of machine M 
○​ L(M) = A 

 
●​ regular language: any language that has a finite automata (DFA or NFA) able to 

recognize it 

Regular operations 
Union (∪): returns a set containing all elements that appear in either set (usage: A ∪ B). 
Formally, A ∪ B = { x | x ∈ A or x ∈ B }. 

Concatenation (∘): returns a set containing all combinations of an element from set A and an 
element from set B (usage: A ∘ B)​
 
Star (*): returns a set containing all words over the alphabet A. (usage: A*) 

An example of each: 



 

Non-deterministic finite automata 
A more generalized form of a DFA, each state does not need a transition arrow for each 
element in the alphabet, the NFA may have more than one active state, it also may have more 
than one transition arrow for a given element in the alphabet, 

NFA’s also have a special symbol ε which is also taken when present and does not “consume” a 
letter out of the string being passed in. 

Generally speaking NFA’s are much less complex than its corresponding DFA. 

Formally described by the 5-tuple (Q, Σ, δ, q0, F):  

1.​ Q is a finite set called states, so if there are 3 states, you would have the set {q0,q1,q2} 
2.​ Σ is a finite set called the alphabet, containing all symbols that automata accepts  

a.​ (ie. {0,1} could be the alphabet) 
3.​ δ: Q × Σε → P(Q) is the transition function. So each item in δ describes what each item 

of the alphabet does at each state in the automata. Where  Σε is Σ ⋃ {ε}, and P(Q) is the 
powerset of Q.   

4.​ q0 ∈ Q is the start state 
5.​ F ⊆ Q is the set of accept (final) states 

 

 



An NFA and the corresponding DFA: 

 



A NFA and its corresponding 5-tuple: 

 

Closure & projection 
Closure: the idea that any of the regular operations performed on two regular languages will 
result in another regular language. 

Projection: Best way to think of projection as far as I am concerned is like a shadow, so {A × B × 
C} projected with {A × C} will leave you with {A × C}. You can also think of it as the intersection 
where all elements in both sets will be present in the new set. 

If s is a string, and  is an alphabet, the string projection of s is the string that results by 

removing all letters which are not in . It is written as . It is formally defined by removal 
of letters from the right hand side: 

 

Regular expressions 
Formal definition: 

1.​ a for some a in the alphabet Σ 



2.​ ε 
3.​ Ø 
4.​ (R1 ∪ R2), where R1 and R2 are regular expressions 
5.​ (R1 ∘ R2), where R1 and R2 are regular expressions 
6.​ (R1*), where R1 is a regular expressions 

Where a and ε represent the languages {a} and {ε} accordingly, and Ø is the empty language. 
The remaining show what happens when a close property is used on the 3 base languages. 

Symbols 
●​ Σ: any symbol in the alphabet (for most example purposes this will be {0,1}) 
●​ *: repeat the previously stated character 0 or more times (ie. 1*, could be “”, “1”, “11”, 

“111”...) 
●​ +: repeat the previously stated character 1 or more times (ie. the same as before but this 

time it must appear at least once) 

Definitions 
●​ R ∪ Ø = R 

○​ Adding the empty language to any other language will not change it (if that wasn’t 
apparent) 

●​ R ∘ ε = R 
○​ Joining the empty string to any string is the exact same string 

DFA ↔ NFA ↔ regex 
Every DFA can be represented by a corresponding NFA and regular expression. 

Example of regex → NFA:​



 

DFA to Regex 
This is aided by a special type of finite automata, called a generalized nondeterministic finite 
automaton defined as the following 5-tuple (Q, Σ, δ, qstart, qaccept) 

1.​ Q is the finite set of states 
2.​ Σ is the input alphabet 
3.​ δ: (Q - {qaccept}) × (Q - {qstart}) → R is the transition function 
4.​ qstart is the start state 
5.​ qaccept is the accept state 

The conversion follows the following function: 

 

And of course the obligatory example problem: 



 

Nonregular Languages 
Any language that cannot be determined in a finite amount of states on a DFA or NFA is called a 
Nonregular Language. Good examples are languages that require the knowledge of a previous 
count to prove them (this is not all inclusive) such as a language that has some number of 0’s 
followed by the same number of 1’s. 

Pumping Lemma 



This is completely copy-pasted from this great Stack Overflow answer: 

The pumping lemma is a simple proof to show that a language is not regular, meaning that a 
Finite State Machine cannot be built for it. The canonical example is the language 
(a^n)(b^n). This is the simple language which is just any number of as, followed by the same 
number of bs. So the strings 

ab​
aabb​
aaabbb​
aaaabbbb 

etc. are in the language, but 

aab​
bab​
aaabbbbbb 

etc. are not. 

It's simple enough to build a FSM for these examples: 

 

This one will work all the way up to n=4. The problem is that our language didn't put any 
constraint on n, and Finite State Machines have to be, well, finite. No matter how many states I 
add to this machine, someone can give me an input where n equals the number of states plus 
one and my machine will fail. So if there can be a machine built to read this language, there 
must be a loop somewhere in there to keep the number of states finite. With these loops added: 

 

all of the strings in our language will be accepted, but there is a problem. After the first four as, 
the machine loses count of how many as have been input because it stays in the same state. 
That means that after four, I can add as many as as I want to the string, without adding any bs, 
and still get the same return value. This means that the strings: 

http://stackoverflow.com/a/1933405


aaaa(a*)bbbb 

with (a*) representing any number of as, will all be accepted by the machine even though they 
obviously aren't all in the language. In this context, we would say that the part of the string (a*) 
can be pumped. The fact that the Finite State Machine is finite and n is not bounded, 
guarantees that any machine which accepts all strings in the language MUST have this 
property. The machine must loop at some point, and at the point that it loops the language can 
be pumped. Therefore no Finite State Machine can be built for this language, and the language 
is not regular. 

Peggy versus Victor 
●​ P: select p ≥ 0 
●​ V: select S inside of A 
●​ P: split S into xyz, where |xy| ≤ p |y| > 0 
●​ V: select how many times to repeat y 
●​ If the new S violates A, V wins, else P wins 
●​ V winning == not regular 

Strategy: ONLY PLAY ONE SIDE.  

If you pick a move for Peggy, when trying to prove a language not regular, you ruin the proof. If 
you play as Peggy - ie. prove that the Pumping Lemma doesn’t apply (winning the game as 
Peggy does not say a language is regular, just that it might not be ..not regular.) then you 
try to define your y such that it doesn’t matter if it exists, or if it’s large or small, etc.  

If you play as Victor, try to define a length p such that Peggy’s choice of y is constrained, or 
worse, contains a necessary part of the regular language. If the latter, you can define the times 
to repeat y as 0, and now it is proved not-regular. If the former, you can make it repeat until 
invalid - but only if it is not a regular language. 

Turing machines 
Differences between a Turing Machine and finite automata: 

1.​ A Turing Machine can both read from / write to the tape. 
2.​ The read-write head can move both left and right. 
3.​ The tape is infinite. 
4.​ The special states for accepting/rejecting take effect immediately. 

Formal Definition: 



A Turing machine is a 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject) 

1.​ Q is the set of states 
2.​ Σ is the input alphabet not containing the blank symbol ⊔ 
3.​ Γ is the tape alphabet where ⊔ ∈ Γ and Σ ⊆ Γ  
4.​ δ is Q x Γ → Q x Γ x {L, R} is the transition function 
5.​ q0 ∈ Q is the start state 
6.​ qaccept ∈ Q is the accept state 
7.​ qreject ∈ Q is the reject state where qreject ≠ qaccept 

When talking about Turing Machines there are 3 main kinds that we speak of: 

1.​ Decider: A turing machine that halts on all inputs(either accepts or rejects). These are 
similar to a DFA in that sense. 

2.​ Recognizer: A turing machine that either reaches accept or loops. A recognizer can run 
infinitely (see the Halting Problem). They are also the default for a turing machine 

3.​ Enumerator: Lists elements of a language rather than considering strings. 

Decidability 

DFA Acceptance Problem 
Let  𝐴

𝐷𝐹𝐴
=  { <  𝐵,  𝑤 >  | 𝐵 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤 }

●​ Need to present a TM M that decides . 𝐴
𝐷𝐹𝐴

●​ M = “On input <B,w>, where B is a DFA and w is a string: 
a.​ Simulate B on input w. 
b.​ If the simulation ends in an accept state, accept.  Otherwise, reject.” 

●​ When M receives its input, it checks whether the input is actually a DFA and string.  If 
not, it rejects. 

●​ M then carries out the simulation, keeping track of B’s state and position on its tape. 
●​ When M finishes processing the last symbol of w, it accepts if B is in an accepting state 

and rejects otherwise. 

The Halting Problem (Theorem 4.11) 
 𝐴

𝑇𝑀
=  { < 𝑀, 𝑤 >  | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤}

Theorem:  is undecidable.  𝐴
𝑇𝑀

Proof: 
●​ Assume  is decidable. 𝐴

𝑇𝑀



●​ Suppose H is a decider for . 𝐴
𝑇𝑀

○​ } 𝐻(< 𝑀, 𝑤 >) =  { 𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤,  𝑟𝑒𝑗𝑒𝑐𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
●​ Construct a new TM D that calls H to determine what M does when M is its own input. 
●​ D = “On input <M>: 

○​ Run H on input <M, <M> >. 
○​ Output the opposite of what H outputs. 

●​ Example of D: 
○​ ​𝐷(< 𝑀 >) =  { 𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 < 𝑀 >

 {𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 < 𝑀 >
●​ Run D with itself as input: 

○​ ​𝐷(< 𝐷 >) =  {𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝐷 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 < 𝐷 >
 {𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝐷 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 < 𝐷 >  

●​ No matter what D does, it is forced to do the opposite ⇒ contradiction. 
●​ Thus, neither D nor H can exist. 
●​ Therefore,  is undecidable. 𝐴

𝑇𝑀

Theorem 4.22 
A language is decidable iff it is Turing-recognizable and co-Turing-recognizable. This means 
that both the language and its complement are Turing recognizable. 

Rice’s Theorem 
Rice’s Theorem states that a property of recognizable languages is itself a recognizable 
language. Because of this, ‘regularity’ is a property. The theorem goes on to say that if a 
language L has a nontrivial property P, such that {<M> | : L(M) is in P} , it is not decidable. 
 
In laymen’s terms, this indicates that if a language has some nontrivial property (defined below) 
it is not decidable, allowing us to more quickly recognize a decidable language. 

Non-Trivial Property 
First, let us define a property as just a set of recognizable languages, e.g. regularity, two a’s, 
etc. We can further define a non-trivial property, P, to be a language which contains and avoids 
at least one recognizable language, the two being a different recognizable language. Once 
again, more simply defined: P is any property which requires more computing capability than 
can effectively be used, and thus it cannot be decided. 
 
They are different for finite automata and Turing machines. 
 
It is important to note that Rice’s Theorem does not say anything about if a given language is 
recognizable. 



Countability 
A set is considered countable if it either has a finite number of elements or it has the same size 
as the set of natural numbers (ie. {0, 1, 2, 3, 4, 5, …}). 

Example of a countable, infinite set: 

 

●​ Theorem 4.17: Real numbers are uncountable. 

Theorem list 
These are lifted from the book. 
 

●​ The class of regular languages is closed under the union operation 
●​ The class of regular languages is closed under the concatenation operation 
●​ The class of regular languages is closed under the star operation 
●​ Every nondeterministic finite automaton has an equivalent deterministic finite automaton 
●​ A language is regular iff some nondeterministic finite automaton recognizes it 
●​ A language is regular iff some regular expression describes it 
●​ If a language is described by a regular expression, then it is regular 
●​ If A is a regular language, then there is a number p (the pumping length) where, if s is 

any string in A of length at least p, then s may be divided into three pieces, s = xyz, 
satisfying the following conditions: 

○​ for each i >= 0, xyiz in A 
○​ |y| > 0 



○​ |xy| <= p 
●​ Every multitape Turing machine has an equivalent single tape turing machine 
●​ A language is Turing-recognizable iff some multitape Turing machine recognizes it 
●​ A language is Turing-recognizable iff some enumerator enumerates it 
●​ Regular expressions, NFAs, and DFAs are decidable 
●​ Every context-free language is decidable 
●​ The set of real numbers is uncountable 
●​ Some languages are not Turing-recognizable 
●​ A language is decidable iff it is Turing-recognizable and co-Turing recognizable 
●​ Regular languages are decidable 
●​ If M is a linear bounded automaton (Turing machine where tape head states inside of the 

input) where L(M) = Ø, then the machine of M is undecidable 

Study guide info 
This study guide is licensed under a Creative Commons Attribution 3.0 Unported license. 
 
The accuracy of this study guide is not guaranteed. 
 
Enjoy! 

http://creativecommons.org/licenses/by/3.0/deed.en_US
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