EECS 376
MIDTERM STUDY GUIDE

by Evan Hahn, Scott Godbold, Cam Herringshaw, Stephen Rolfe, Zachariah Gerth (add your

name if you helped!)

Good luck on the test, everyone!

Exam logistics

e One side of a 8.5” x 11” piece of paper (Evan and Scott made this one)
e Inclass
e List of concepts: part 1, part 2

At a high level

There are many different computational models of computers, just like there are many
mathematical models of physics and other stuff. These include finite automata and Turing
machines, the two major parts of this exam.

Deterministic finite automata

Deterministic (DFA): each state must have exactly one transition arrow for every item in the
alphabet, and it may only occupy a single state at a time.

Formally described by the 5-tuple (Q, Z, &, qo, F):

1. Q: afinite set of states. For example, if there are 3 states, you would have the set
{d0,91,02}-

2. %: afinite set called the alphabet, containing all symbols that automata accepts. For
example, {0,1} could be the alphabet.

3. 0&: transition function. The domain (inputs) is Q x) and the range is Q, which can be
writtenas Q x 3 — Q.

4. qo: Qis the start state. qo € Q.

5. F: set of accept states. Can be empty set. F € Q.

http://cl.ly/1R1R3H1T1J3P
https://piazza.com/class#winter2013/eecs376/65
https://piazza.com/class#winter2013/eecs376/213

Here’s a DFA with the corresponding 5-tuple describing it:

q1 q3
FIGURE 1.6

The finite automaton M,

We can describe M; formally by writing M, = (Q, 2,4, q:, F), where
1. Q= {q. 92,43},

2. ¥ ={01},

3. & is described as

q1 | 91 g2
g2 | 43 Q2
q3 | g2 q2

4, q, is the start state, and
5. F ={q}.

e equivalent statements about the set of strings A and machine M:
o M accepts A
o M recognizes A
o Alis the language of machine M
o LM)=A

e regular language: any language that has a finite automata (DFA or NFA) able to
recognize it

Regular operations

Union (U): returns a set containing all elements that appear in either set (usage: A U B).
Formally, AUB={x|x€ Aorx € B}

Concatenation (°): returns a set containing all combinations of an element from set A and an
element from set B (usage: A ° B)

Star (*): returns a set containing all words over the alphabet A. (usage: A")

An example of each:

EXAMPLE 1.24 -

Let the alphabet ¥ be the standard 26 letters {a, b, ..., z}. If A = {good, bad}
and B = {boy. girl}, then

AU B = {good, bad, boy, girl},
Ao B = {goodboy, goodgirl, badboy, badgirl}, and

A* = {g, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goedbadbad, ... }.

Non-deterministic finite automata

A more generalized form of a DFA, each state does not need a transition arrow for each
element in the alphabet, the NFA may have more than one active state, it also may have more
than one transition arrow for a given element in the alphabet,

NFA's also have a special symbol € which is also taken when present and does not “consume” a
letter out of the string being passed in.

Generally speaking NFA's are much less complex than its corresponding DFA.

Formally described by the 5-tuple (Q, , &, qq, F):

1.
2.

Q is a finite set called states, so if there are 3 states, you would have the set {q,,q:,9,}
2 is a finite set called the alphabet, containing all symbols that automata accepts

a. (ie. {0,1} could be the alphabet)
0: Q x ¥, — P(Q) is the transition function. So each item in & describes what each item
of the alphabet does at each state in the automata. Where Z,is 2 U {€}, and P(Q) is the
powerset of Q.
Jo € Q is the start state
F S Qs the set of accept (final) states

Deterministic Nondeterministic
computation computation
« Start .
({ M
| M
1— 0
) ;
E. reject { 1

: R

* accept or reject + accept

An NFA and the corresponding DFA:

exampPLE 1.30

Let A be the language consisting of all strings over {0.1} containing a 1 in the
third position from the end (e.g., 000100 is in A but 0011 is not). The following
four-state NFA N, recognizes A.

Ficure 1.31
The NFA N, recognizing A

FIGURE 1.32
A DFA recognizing A

A NFA and its corresponding 5-tuple:

ExAMPLE 1.38
Recall the NFA Ni:

0,1 0,1
§ N
FoEEoECE

The formal description of Ny is (Q, £, 8, ¢, F), where

1.Q= {‘.':Jf'bfh.ﬁll}‘
2. u={0,1},
3. s given as

4, ¢ is the start state, and
5. F={qu}

Closure & projection

Closure: the idea that any of the regular operations performed on two regular languages will
result in another regular language.

Projection: Best way to think of projection as far as | am concerned is like a shadow, so {A x B x
C} projected with {A x C} will leave you with {A x C}. You can also think of it as the intersection
where all elements in both sets will be present in the new set.

If sis a string, and Y isan alphabet, the string projection of s is the string that results by

removing all letters which are not in Y. ltis writenas 7T ':S‘] . It is formally defined by removal

of letters from the right hand side:

£ if s = £ the empty string
e(s) =< w=(t) ifs=taanda ¥
v

T=(t)a ifs=taanda <

Regular expressions

Formal definition:

1. afor some a in the alphabet

&f")

R; U R,), where R, and R, are regular expressions
R; ° Ry), where R; and R, are regular expressions
R,™), where R, is a regular expressions

o0k wd

Where a and ¢ represent the languages {a} and {€} accordingly, and @ is the empty language.
The remaining show what happens when a close property is used on the 3 base languages.

Symbols

e >:any symbol in the alphabet (for most example purposes this will be {0,1})

e *:repeat the previously stated character 0 or more times (ie. 1*, could be *’, “1”, “11”,
“1117..)

e +: repeat the previously stated character 1 or more times (ie. the same as before but this
time it must appear at least once)

Definitions
e RUUZ=R
o Adding the empty language to any other language will not change it (if that wasn’t
apparent)
e R°e=R

o Joining the empty string to any string is the exact same string

DFA — NFA < regex

Every DFA can be represented by a corresponding NFA and regular expression.

Example of regex — NFA:

examprLe 1.58

In Figure 1.59, we convert the regular expression (a Ub)*aba to an NFA. A few
of the minor steps are not shown.

(aub)*

(aUb)*aba

FIGURE 1.59
Building an NFA from the regular expression (a U'b)"aba

DFA to Regex

This is aided by a special type of finite automata, called a generalized nondeterministic finite
automaton defined as the following 5-tuple (Q, %, 8, Qstarts Qaccept)

Q is the finite set of states

2 is the input alphabet

o: (Q - {qaccept}) X (Q - {qstan}) — R is the transition function
Ostart IS the start state

Jaceept IS the accept state

ab b~

The conversion follows the following function:

CONVERT(G):
. Let k be the number of states of (7.

[

. If k = 2, then G must consist of a start state, an accept state, and a single
arrow connecting them and labeled with a regular expression R.
Return the expression R.

3. If k > 2, we select any state gy, € Q different from gour; and gaecep and let
7' be the GNFA (Q', 2, &', Gsart; Gaccept), Where

Q" = Q — {grip}
and for any ¢; € Q" — {Gaccept} and any q; € Q' — {gswar} let
8'(gi,q5) = (R1)(R2)"(Rs) U (Ra),

for Ry = d("hs@'rip)v Ry = S(f}riw‘?rip)g R; = ﬁ(flripszj)s and Ry = ‘s(‘?i‘(b}-
4. Compute CONVERT(G") and return this value.

And of course the obligatory example problem:

EXAMPLE 1 .68 O —

In this example we begin with a three-state DFA. The steps in the conversion are
shown in the following figure.

(baUa)(aa lUb)*ab U bb

(© (d

~© ©

(a(aaUb)*abUb)((baUa)(aaUb)*abUbb)*((batua)(aalUb)* Us)Ua(aaUb)*

(e)

Nonregular Languages

Any language that cannot be determined in a finite amount of states on a DFA or NFA is called a
Nonregular Language. Good examples are languages that require the knowledge of a previous
count to prove them (this is not all inclusive) such as a language that has some number of 0’s
followed by the same number of 1’s.

Pumping Lemma

This is completely copy-pasted from this great Stack Overflow answer:

The pumping lemma is a simple proof to show that a language is not regular, meaning that a
Finite State Machine cannot be built for it. The canonical example is the language

(a”n) (b”n). This is the simple language which is just any number of as, followed by the same
number of bs. So the strings

ab

aabb
aaabbb
aaaabbbb

etc. are in the language, but

aab
bab
aaabbbbbb

etc. are not.

It's simple enough to build a FSM for these examples:

This one will work all the way up to n=4. The problem is that our language didn't put any
constraint on n, and Finite State Machines have to be, well, finite. No matter how many states |
add to this machine, someone can give me an input where n equals the number of states plus
one and my machine will fail. So if there can be a machine built to read this language, there
must be a loop somewhere in there to keep the number of states finite. With these loops added:

all of the strings in our language will be accepted, but there is a problem. After the first four as,
the machine loses count of how many as have been input because it stays in the same state.
That means that after four, | can add as many as as | want to the string, without adding any bs,
and still get the same return value. This means that the strings:

http://stackoverflow.com/a/1933405

aaaa (a*) bbbb

with (a*) representing any number of as, will all be accepted by the machine even though they
obviously aren't all in the language. In this context, we would say that the part of the string (a*)
can be pumped. The fact that the Finite State Machine is finite and n is not bounded,
guarantees that any machine which accepts all strings in the language MUST have this
property. The machine must loop at some point, and at the point that it loops the language can
be pumped. Therefore no Finite State Machine can be built for this language, and the language
is not regular.

Peggy versus Victor

P:selectpz=0

V: select S inside of A

P: split S into xyz, where |xy|<p|y| >0

V: select how many times to repeat y

If the new S violates A, V wins, else P wins
V winning == not regular

Strategy: ONLY PLAY ONE SIDE.

If you pick a move for Peggy, when trying to prove a language not regular, you ruin the proof. If
you play as Peggy - ie. prove that the Pumping Lemma doesn’t apply (winning the game as
Peggy does not say a language is regular, just that it might not be ..not regular.) then you
try to define your y such that it doesn’t matter if it exists, or if it's large or small, etc.

If you play as Victor, try to define a length p such that Peggy’s choice of y is constrained, or
worse, contains a necessary part of the regular language. If the latter, you can define the times
to repeat y as 0, and now it is proved not-regular. If the former, you can make it repeat until
invalid - but only if it is not a regular language.

Turing machines

Differences between a Turing Machine and finite automata:

A Turing Machine can both read from / write to the tape.

The read-write head can move both left and right.

The tape is infinite.

The special states for accepting/rejecting take effect immediately.

hwnh =

Formal Definition:

A Turing machine is a 7-tuple (Q, Z, I, 8, 0o, Jaccepts Areject)

Q is the set of states

2 is the input alphabet not containing the blank symbol u
I"is the tape alphabetwherev € NTand 2 & I

0is QxI — QxT x{L, R} is the transition function

go € Q is the start state

Qaccept € Q is the accept state

Qreject € Q is the reject state where qreject 7 Qacoept

NOoO gk wN -~

When talking about Turing Machines there are 3 main kinds that we speak of:

1. Decider: A turing machine that halts on all inputs(either accepts or rejects). These are
similar to a DFA in that sense.

2. Recognizer: A turing machine that either reaches accept or loops. A recognizer can run
infinitely (see the Halting Problem). They are also the default for a turing machine

3. Enumerator: Lists elements of a language rather than considering strings.

Decidability

DFA Acceptance Problem

Let A = { < B,w > |BisaDFAthat accepts input string w }

e Need to present a TM M that decides ADFA.

e M="On input <B,w>, where B is a DFA and w is a string:
a. Simulate B on input w.
b. If the simulation ends in an accept state, accept. Otherwise, reject.”
e When M receives its input, it checks whether the input is actually a DFA and string. If
not, it rejects.
M then carries out the simulation, keeping track of B’s state and position on its tape.
When M finishes processing the last symbol of w, it accepts if B is in an accepting state
and rejects otherwise.

The Halting Problem (Theorem 4.11)

A= { <Mw> |MisaTM and M accepts w}
Theorem: ATM is undecidable.

Proof:
e Assume ATM is decidable.

e Suppose H is a decider for ATM.

o H(< M,w >) = {acceptif M acceptsw, reject otherwise }
Construct a new TM D that calls H to determine what M does when M is its own input.
D =“On input <M>:
o Run Hon input <M, <M> >,
o Output the opposite of what H outputs.
e Example of D:
o D(<KM >) = {acceptif M does not accept < M >
{rejectif M accepts < M >
e Run D with itself as input:
o D(< D >) = {acceptif D does not accept < D >
{rejectif D accepts < D >
No matter what D does, it is forced to do the opposite = contradiction.
Thus, neither D nor H can exist.
Therefore, ATM is undecidable.

Theorem 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable. This means
that both the language and its complement are Turing recognizable.

Rice’s Theorem

Rice’s Theorem states that a property of recognizable languages is itself a recognizable
language. Because of this, ‘regularity’ is a property. The theorem goes on to say that if a
language L has a nontrivial property P, such that {<M> | : L(M) is in P}, it is not decidable.

In laymen’s terms, this indicates that if a language has some nontrivial property (defined below)
it is not decidable, allowing us to more quickly recognize a decidable language.

Non-Trivial Property

First, let us define a property as just a set of recognizable languages, e.g. regularity, two a’s,
etc. We can further define a non-trivial property, P, to be a language which contains and avoids
at least one recognizable language, the two being a different recognizable language. Once
again, more simply defined: P is any property which requires more computing capability than
can effectively be used, and thus it cannot be decided.

They are different for finite automata and Turing machines.

It is important to note that Rice’s Theorem does not say anything about if a given language is
recognizable.

Countability

A set is considered countable if it either has a finite number of elements or it has the same size
as the set of natural numbers (ie. {0, 1, 2, 3, 4, 5, ...}).

Example of a countable, infinite set:

: o

2y 2 (23 2 B

\ .1/ 2 3 1 5

- - -

(3% (3% 3 4 3

1/ 2/ 73 1 5

(T 7 4 a4

~. 1/ 2 3 1 5

-\
L] 1=
.

e Theorem 4.17: Real numbers are uncountable.

Theorem list

These are lifted from the book.

The class of regular languages is closed under the union operation
The class of regular languages is closed under the concatenation operation
The class of regular languages is closed under the star operation
Every nondeterministic finite automaton has an equivalent deterministic finite automaton
A language is regular iff some nondeterministic finite automaton recognizes it
A language is regular iff some regular expression describes it
If a language is described by a regular expression, then it is regular
If A is a regular language, then there is a number p (the pumping length) where, if s is
any string in A of length at least p, then s may be divided into three pieces, s = xyz,
satisfying the following conditions:
o foreachi>=0, xyzin A
o lyl>0

o |xyl<=p
Every multitape Turing machine has an equivalent single tape turing machine
A language is Turing-recognizable iff some multitape Turing machine recognizes it
A language is Turing-recognizable iff some enumerator enumerates it
Regular expressions, NFAs, and DFAs are decidable
Every context-free language is decidable
The set of real numbers is uncountable
Some languages are not Turing-recognizable
A language is decidable iff it is Turing-recognizable and co-Turing recognizable
Regular languages are decidable
If M is a linear bounded automaton (Turing machine where tape head states inside of the
input) where L(M) = &, then the machine of M is undecidable

Study guide info

This study guide is licensed under a_Creative Commons Attribution 3.0 Unported license.

The accuracy of this study guide is not guaranteed.

Enjoy!

http://creativecommons.org/licenses/by/3.0/deed.en_US

	EECS 376​MIDTERM STUDY GUIDE
	Exam logistics
	At a high level
	Deterministic finite automata
	Regular operations
	Non-deterministic finite automata
	Closure & projection
	Regular expressions
	Symbols
	Definitions

	DFA ↔ NFA ↔ regex
	DFA to Regex

	Nonregular Languages
	Pumping Lemma
	Peggy versus Victor

	Turing machines
	Decidability
	DFA Acceptance Problem
	The Halting Problem (Theorem 4.11)
	Theorem 4.22
	Rice’s Theorem
	Non-Trivial Property

	Countability
	Theorem list
	Study guide info

