

Executing Cross-language Transforms in the
Beam Go SDK

Kevin Sijo Puthusseri
(kevinsijo@google.com, @pskevin)

Uber JIRA

Goal

Background
Cross-language Pipelines

SDK Components
Construction Flow
Artifact Staging and Job Submission

Go SDK
Graph Construction
Handling Artifacts

Proposal
External Transforms API
Handling Artifacts
Construction Flow
Organization and Dependency
Convenience Wrappers
Validating Cross-language Go SDK

Appendix
Glossary

Note

This document is meant to be a sufficient not complete
resource to understand the challenges and suggested
solutions associated with supporting execution of
cross-language transforms in the Go SDK. Thus,
information assumed to be foreknowledge has been
redundantly summarized to provide better context.
Corresponding complete and detailed resources are
linked wherever applicable.
It is a work in progress and represents only what I’ve
understood. Thus, obviously, it may not accurately
represent facts and requires everyone's input. Any and
all opinions are absolutely required and invited.

Goal
→​ Add an External Transforms client that enables running Java/Python transforms from a

pipeline authored using the Go SDK

→​ Validate correctness by adding Go SDK tests to existing cross-language Flink/Spark test
suites

mailto:kevinsijo@google.com
https://issues.apache.org/jira/browse/BEAM-9918
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.r1ukjuvofequ
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.v6psbfxi4ixm
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.d2wbk7ip6fk4
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.z0d9cd1k2vnj
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.x4x5mw4mvpne
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.ite2bb33q6td
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.bfbdcefqo0q9
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.e717oeqswjdg
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.1vdp4rz1io8i
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.qaokfg918thw
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.wvbcaayu61e3
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.4whq30u4nswd
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.yibodrrd909h
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.y8qxfnmdp4nx
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.822s497n9dau
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.2ir09m2nenud
https://docs.google.com/document/d/1ve1dDoiu6ucUoNR7gSgYONxMsDxC3s-o0GSm_54uW7g/edit#heading=h.m8djurts5979

Background
Note All required foreknowledge has been described under their respective sections only to

provide better context. Feel free to skip parts you understand.

Beam’s portability efforts allow, by design , for 1

transforms authored in any supported SDK to be
executed on any runner. The SDK-Runner
boundaries through pipeline construction and
execution, are linked by generic proto
representations streamed over gRPC.

 The decoupled phases can be summarized into:
1.​ Pipeline Construction

The authoring SDK represents the pipeline as a
language-agnostic proto which is submitted to a
portable runner along with associated
artifact(s).

2.​ Pipeline Execution
The portable runner orchestrates execution by
spawning workers (SDK harnesses) within
environments as needed by the transforms.

Cross-language Pipelines

SDK Components
The Beam Fn API supports executing code written in arbitrary languages thus enabling the 2

cross-language pipeline execution phase to work out of the box. Constructing pipelines that
use External transforms (i.e. transforms from foreign SDKs), on the other hand, is more
involved than pipelines strictly using transforms from the authoring language because:

→​ The authoring SDK doesn’t understand how to decompose the external transform into a
DAG of Beam’s primitive transforms

→​ The authoring SDK doesn’t know upon which artifacts the external transform
(decomposed or not) depends

Thus, to construct cross-language pipelines, SDKs need to be augmented with additional
components.

2 Excerpt from the Cross-language Beam Pipelines design document
1 Portable Beam Overview diagram sourced from Apache Beam Project Overview slide deck

https://s.apache.org/beam-mixed-language-pipelines
https://docs.google.com/presentation/d/1Tc9MdXTDicb6jVCrXjsCbbnLYQCxYiKlTYdVpRkYdBQ/edit#slide=id.g11bcfc06a9_1_1098

Moreover, each SDK that supports cross-language transforms needs take into account that it
may:

→​ Use an external transform provided by a foreign SDK
→​ Author an external transform used by other SDKs

Note This design document proposes a solution to the first use case delineated above.
The second use case will be discussed, in the future, in a different design document.

The various cross-language components and their role within an SDK can be understood as
follows:

→​ Expansion Service
It is responsible for providing the correct representation and associated artifacts for
transforms the SDK exposes to be consumed by foreign SDKs as external transforms.

→​ External Transforms client
It interfaces with the foreign SDK’s Expansion Service for correct representation of an
external transform. This representation is then added to the natively existing DAG of
transforms eventually submitted as a pipeline proto.

→​ Artifact Retrieval Service client
It resolves and stores locally artifacts required by the expanded external transform with the
help of the foreign SDK’s Expansion service. It is also used by the SDK harness to retrieve
staged artifacts from the Job Service during pipeline execution.

→​ Artifact Staging Service client

It relays locally stored artifacts to the Job Service during job submission. These staged
artifacts are further used to instantiate correct environments for the workers before
pipeline execution can begin.

Construction Flow

Pipeline construction of an External transform can be decomposed into the following steps:

1.​ Transform Expansion

message ExpansionRequest {

 Components components = 1;

 PTransform transform = 2;

 string namespace = 3;

}

message ExpansionResponse {

 Components components = 1;

 PTransform transform = 2;

 repeated string requirements = 3;

 string error = 10;

}

The pipeline authoring SDK’s External Transforms client uses protos of the above form
to query the foreign SDK’s Expansion service for an expanded representation
(comprising the DAG of Beam’s primitive transforms) of the external transform. The
expanded transform’s FunctionSpec will contain information regarding the environment 3

and artifact(s) required to execute the transform.

3 GitHub permalink to FunctionSpec and PTransform's FunctionSpec definitions in the Beam Runner API proto

https://github.com/apache/beam/blob/424bc6d94a6b7c6a7384882c8f0a4d6423f9357f/model/pipeline/src/main/proto/beam_runner_api.proto#L1448
https://github.com/apache/beam/blob/424bc6d94a6b7c6a7384882c8f0a4d6423f9357f/model/pipeline/src/main/proto/beam_runner_api.proto#L152
https://github.com/apache/beam/blob/424bc6d94a6b7c6a7384882c8f0a4d6423f9357f/model/pipeline/src/main/proto/beam_runner_api.proto

2.​ Artifact Resolution

message ResolveArtifactsRequest {

 ArtifactInformation artifacts = 1;

 repeated string preferred_urns = 2;

}

message ResolveArtifactsResponse {

ArtifactInformation replacements = 1;

}

Information of the artifact(s) may be incomplete since they may only represent higher
order dependencies. In order to get the list of transitive dependencies associated with
this external transform, the authoring SDK’s Artifact Retrieval Service client queries the
foreign SDK’s expansion service using the protos above . 4

3.​ Sourcing Artifacts

message GetArtifactRequest {

 ArtifactInformation artifact = 1;

}

message GetArtifactResponse {

 bytes data = 1;

}

Once the artifact information has been received, the authoring SDK’s Artifact Retrieval
Service client queries the foreign SDK’s expansion service using the protos above, for
the actual artifact. The authoring SDK then stores these artifacts locally and updates
their corresponding ArtifactInformation to reflect the local location. 5

Artifact Staging and Job Submission

TODO(kevinsijo): Visualizing ReverseArtifactRetrievalService in context to job submission.

The authoring SDK streams the local artifacts to the Artifact Staging Service using the staging
token received from PrepareJob after connecting to the Job Service by implementing the
ReverseArtifactRetrievalService. The Artifact Retrieval Service uses a retrieval token from the 6

provisioning service to get a registered list of artifacts. The workers then use the Artifact
Retrieval Service client and stream the required artifacts from the Artifact Retrieval Service
using the retrieval token received from the provisioning service. 7

7 Most proposed changes to Pipeline submission from Heejong Lee’s Cross-language Artifact Staging: Design on
Implementation Details

6 Github permalink to ReverseArtifactStagingService in the Beam Artifact API proto
5 GitHub permalink to ArtifactInformation definitions in the Beam Runner API proto

4 Most recent implementation of Artifact Resolution from Heejong Lee’s Cross-language Artifact Staging: Design on
Implementation Details

https://docs.google.com/document/d/1L7MJcfyy9mg2Ahfw5XPhUeBe-dyvAPMOYOiFA1-kAog/#heading=h.dsfqh2s8kcwf
mailto:heejong@google.com
https://docs.google.com/document/d/1L7MJcfyy9mg2Ahfw5XPhUeBe-dyvAPMOYOiFA1-kAog
https://docs.google.com/document/d/1L7MJcfyy9mg2Ahfw5XPhUeBe-dyvAPMOYOiFA1-kAog
https://github.com/apache/beam/blob/ddfeb267f11645e500e7fe68b9f0f5744a395bfb/model/job-management/src/main/proto/beam_artifact_api.proto#L55
https://github.com/apache/beam/blob/ddfeb267f11645e500e7fe68b9f0f5744a395bfb/model/job-management/src/main/proto/beam_artifact_api.proto
https://github.com/apache/beam/blob/c22a2b05094778cd56e5dcfa40a76135c5f53135/model/pipeline/src/main/proto/beam_runner_api.proto#L1270
https://github.com/apache/beam/blob/424bc6d94a6b7c6a7384882c8f0a4d6423f9357f/model/pipeline/src/main/proto/beam_runner_api.proto
https://docs.google.com/document/d/1L7MJcfyy9mg2Ahfw5XPhUeBe-dyvAPMOYOiFA1-kAog/#heading=h.qg3xrss59id
mailto:heejong@google.com
https://docs.google.com/document/d/1L7MJcfyy9mg2Ahfw5XPhUeBe-dyvAPMOYOiFA1-kAog
https://docs.google.com/document/d/1L7MJcfyy9mg2Ahfw5XPhUeBe-dyvAPMOYOiFA1-kAog

Go SDK
Having examined how external transforms are part of pipelines authored in Java/Python SDKs,
it is useful to understand how the Go SDK works to enable execution of external transforms in it
as well. The Go SDK is notably different from the Java/Python SDKs since:

→​ Absence of generics makes it rely heavily on reflection to ensure type consistency
across the pipeline.

→​ In order to monitor and handle composite transforms, it has a notion of “scopes” that
associate PTransform(s) and PCollections together.

→​ Helper constructs to memoize parts of the graph and handle proto↔instance
conversions are segregated in different packages/functions.

Graph Construction
Adding an expanded external transform to the existing pipeline requires understanding how the
pipeline is represented within the SDK. As of now, the entire pipeline exists as a hypergraph 8

where every PCollection is a node and each PTransform is a multi-edge.

The approximate form of the hypergraph and its associated types are given below:

type Graph struct {

 scopes []*Scope

 edges []*MultiEdge

 nodes []*Node

 root *Scope

}

type Node struct {

 id int

 t typex.FullType

 Coder *coder.Coder

 w *window.WindowingStrategy

 bounded bool

}

type MultiEdge struct {

 id int

 parent *Scope

 Op Opcode

 /*Operation related fields*/

 Input []*Inbound

 Output []*Outbound

}

type Inbound struct {

 Kind InputKind

 From *Node

 Type typex.FullType

}

type Outbound struct {

 To *Node

 Type typex.FullType

}

8 A Hypergraph is a generalization of a graph in which an edge can join any number of vertices.

https://en.wikipedia.org/wiki/Hypergraph

Each MultiEdge is an edge in the hypergraph’s edge and
represents a PTransform as depicted in the adjoining figure.
Each Node (P) represents a single PCollection. Inbound and
Outbound represent the anticipated incoming and outgoing
types of PCollections respectively. The MultiEdge is bounded
by a Scope (S). Organizing scopes as parents and children
help in composing and monitoring composite transforms.

Note

Multiple types of Inbound links represent the possibility of
multiple inputs (main and side).
Multiple types of Outbound links represent the possibility of
multiple emitters within the same PTransform.

This figure above exemplifies how the Go SDK represents a
pipeline with PTransforms that operate on multiple inputs and
emit multiple outputs as a hypergraph organized contextually
by a hierarchy of scopes.

Handling Artifacts
Components that manage artifacts exists independently, siloed in different packages:

→​ translate.go in beam/core/runtime/exec/ translates proto→instance 9

→​ translate.go in beam/core/runtime/graphx translates instance→proto 10

→​ materialize.go in beam/artifact implements the Artifact Retrieval Service client 11

→​ stage.go in beam/runners/universal/runnerlib implements the Artifact Staging 12

Service client

12 Artifact Staging Service client
11 Artifact Retrieval Service client
10 instance→proto
9 proto→instance

https://github.com/apache/beam/blob/a2b0ad14f1525d1a645cb26f5b8ec45692d9d54e/sdks/go/pkg/beam/runners/universal/runnerlib/stage.go
https://github.com/apache/beam/blob/a2b0ad14f1525d1a645cb26f5b8ec45692d9d54e/sdks/go/pkg/beam/artifact/materialize.go
https://github.com/apache/beam/blob/a2b0ad14f1525d1a645cb26f5b8ec45692d9d54e/sdks/go/pkg/beam/core/runtime/graphx/translate.go
https://github.com/apache/beam/blob/a2b0ad14f1525d1a645cb26f5b8ec45692d9d54e/sdks/go/pkg/beam/core/runtime/exec/translate.go

Proposal

External Transforms API
A barebones cross-language transforms client generally has the following API:

function External (string urn, byte[] payload, string expansionAddr) {...}

In order to support cross-language transforms in the Go SDK, a new API is proposed and is
contrasted with the existing API as follows:

Current API Proposed API

func External(

 s Scope,

 spec string,

 payload []byte,

 in []PCollection,

 out []FullType,

 bounded bool,

) []PCollection

func External(

 s Scope,

 urn string,

 payload []byte,

 in []PCollection,

 out []FullType,

 bounded bool,

 expansionAddr string,

 opts ...Option,

) []PCollection

→​ As explained previously, s Scope is necessary and thus, is retained.

→​ spec string is renamed to urn string to better reflect its relevance.

→​ payload []byte is retained since it’s required by the Expansion Service.

→​ in []PCollection is retained since it’s required to populate ExpansionRequest proto.

→​ Type inference of the output PCollections from the expanded external transform isn’t
possible since reverse schema decoding is still being implemented by Robert Burke.
Due to this, for sake of accurate pipeline construction, the current API requires the
anticipated output type(s) to be explicitly passed. For the same reason and backwards
compatibility, the proposed API will retain the out []FullType field.

→​ bounded bool is retained to further specify whether the output is bounded or not.

→​ expansionAddr string is added to query the Expansion Service.

→​ In contrast to the existing API, the variadic opts ...Option field is added since multiple 13

inputs (main and/or side) are expected from a cross-language transforms client.

13 Option interface from beam/option.go

mailto:rebo@google.com
https://github.com/apache/beam/blob/a2b0ad14f1525d1a645cb26f5b8ec45692d9d54e/sdks/go/pkg/beam/option.go#L25

Handling Artifacts
As of now, the Go SDK constructs environments corresponding to each PTransform when the
entire graph is converted into proto just before job submission using translate.go in
beam/core/runtime/graphx. A Go environment is added to each PTransform by default since,
obviously, they are all natively in Go.

To support cross-language transforms, this is not feasible anymore. Artifacts belonging to each
PTransform part of the expanded external transform need resolution before pipeline
submission. Moreover, in contrast to the Java/Python SDKs, this proposal explicitly chooses to
defer artifact resolution to instance→proto translation. This is to avoid wasteful network
consumption caused by resolution and fetching of artifacts everytime pipeline construction
fails due to erroneous user code. Regardless of when artifact resolution occurs, the
environments received as ExpansionResponse need to be saved and made referenceable to
the correct PTransform for further processing.

Thus, changes to Graph are proposed and reasoned as follows:

Current API Proposed API

type Graph struct {

 scopes []*Scope

 edges []*MultiEdge

 nodes []*Node

 root *Scope

}

type Graph struct {

 scopes []*Scope

 edges []*MultiEdge

 nodes []*Node

 root *Scope

 envs map[int]*pipepb.Environment

}

→​ Each MultiEdge has a unique id int associated with it. Using this, for each PTransform
of the expanded external transform, it’s associated environment can be saved as envs
 map[int]*pipepb.Environment to be referenced and resolved later.

→​ For every transform whose id is a part of the envs field, during instance→proto
translation, artifacts will be resolved and fetched.

→​ Each pipepb.Environment with a local artifact will be updated to reflect correct paths
using which they will be staged during job submission.

Construction Flow

1.​ User call

out := beam.External(s, urn, payload, in out, bounded, expansionAddr, opts)

2.​ Proposed v/s Legacy
If expansionAdd or opts fields are present, then the proposed API will be called
otherwise the legacy API will be called with its expected arguments

3.​ Expansion

The external transform will be expanded by querying the Expansion Service and added
to the existing graph using:

→​ Helper functions from translate.go in beam/core/runtime/exec/ and
beam/core/runtime/graphx to handle proto↔instance translation required to:
⟹​ Build the ExpansionRequest
⟹​ Interpret the ExpansionResponse and store Environment for each

PTransform of the expanded external transform
→​ Helper functions from edge.go in beam/core/graph to add the expanded 14

transform and it’s subgraph to the existing hypergraph.

4.​ Handling Artifacts

During instance→proto translation, artifacts for each environment in Graph.envs are
resolved and fetched locally using:

→​ Helper functions from materialize.go in beam/artifact for artifact resolution
and retrieval

→​ Environments for each retrieved artifact are updated to reflect local paths

Organization and Dependency
The external transforms API and expansion related code will reside in external.go under 15

beam/. In the future, when Go SDK’s Expansion Service is implemented in expand.go, it will also
be under beam/.
Ideally, proto↔instance translation should be abstracted out into a common library package.

Convenience Wrappers
It would be really convenient for users if the types for output PCollections are wrapped around
and declared in advance.
Obviously, IO connectors need to provide convenience wrappers that do more than just this.

15 External Transforms API
14 Hypergraph helper functions

https://github.com/apache/beam/blob/a2b0ad14f1525d1a645cb26f5b8ec45692d9d54e/sdks/go/pkg/beam/external.go
https://github.com/apache/beam/blob/a2b0ad14f1525d1a645cb26f5b8ec45692d9d54e/sdks/go/pkg/beam/core/graph/edge.go

Validating Cross-language Go SDK
TODO(kevinsijo): Describe design for this, when the previous parts are implemented.

func TryCrossLanguage(s Scope, ext *graph.ExternalTransform)

(map[string]*graph.Node, error

Appendix

Glossary


``` 
func TryCrossLanguage(s Scope, ext *graph.ExternalTransform) (map[string]*graph.Node, 
error) { 
​ // Add ExternalTransform to the Graph 
 
​ // Validating scope 
​ if !s.IsValid() { 
​ ​ return nil, errors.New("invalid scope") 
​ } 
 
​ // Using existing MultiEdge format to represent ExternalTransform (already backwards 
compatible) 
​ edge := graph.NewCrossLanguage(s.real, s.scope, ext) 
 
​ // Build the ExpansionRequest 
 
​ // Obtaining the components and transform proto representing this transform 
​ p, err := graphx.Marshal([]*graph.MultiEdge{edge}, &graphx.Options{}) 
​ if err != nil { 
​ ​ return nil, errors.Wrapf(err, "unable to generate proto representation of %v", ext) 
​ } 
 
​ xlangx.AddFakeImpulses(p) 
 
​ // Assembling ExpansionRequest proto 
​ transforms := p.GetComponents().GetTransforms() 



 

​ rootTransformID := p.GetRootTransformIds()[0] // External transform is the only root 
transform 
​ rootTransform := transforms[rootTransformID] 
 
​ delete(transforms, rootTransformID) 
 
​ req := &jobpb.ExpansionRequest{ 
​ ​ Components: p.GetComponents(), 
​ ​ Transform:  rootTransform, 
​ ​ Namespace:  s.String(), //TODO(pskevin): Need to be unique per transform 
(along with the UniqueName which is just string(Opcode) for now) 
​ } 
 
​ res, err := xlangx.Expand(context.Background(), req, ext.ExpansionAddr) 
​ if err != nil { 
​ ​ return nil, errors.WithContextf(err, "failed to expand external transform with error 
[%v] for ExpansionRequest: %v", res.GetError(), req) 
​ } 
 
​ xlangx.RemoveFakeImpulses(res.GetComponents(), res.GetTransform()) 
 
​ exp := &graph.ExpandedTransform{ 
​ ​ Components_:     res.GetComponents(), 
​ ​ Transform_:      res.GetTransform(), 
​ ​ Requirements_:   res.GetRequirements(), 
​ ​ BoundedOutputs_: make(map[string]bool), 
​ } 
​ ext.Expanded_ = exp 
 
​ xlangx.VerifyNamedOutputs(ext) 
 
​ xlangx.ResolveOutputIsBounded(ext) 
 
​ // Using information about the output types and bounded nature inferred or explicitly 
passed by the user 
​ graph.AddOutboundLinks(s.real, edge) 
 
​ return ext.Outputs, nil 
} 
 
``` 


	Executing Cross-language Transforms in the
	Beam Go SDK
	Goal
	Background
	Cross-language Pipelines
	SDK Components
	Construction Flow
	Artifact Staging and Job Submission

	Go SDK
	Graph Construction
	Handling Artifacts

	Proposal
	External Transforms API
	Handling Artifacts
	
	Construction Flow
	Organization and Dependency
	Convenience Wrappers
	Validating Cross-language Go SDK

	Appendix
	Glossary

