
A Node.js Security Model

Intent
This document proposes a way to introduce a set of features to Node.js in order to achieve a
reasonable security model based upon the Object-Capability Model and verification of resources
loaded by Node.js. Node.js was not designed to be a sandbox, and the usage of potentially
dangerous APIs by code running in a Node.js process remains valid. The main purpose is not to
prevent improper usage of APIs but to enable trust to be enforced and auditing to be performed
in a reasonable manner for applications deployed to Node.js environments. The security model
presented here is not exhaustive; even if all of these proposals are adopted, OS-level
techniques for securing Node.js processes (such as handling memory constraints and user
privileges) will continue to be necessary. The implementation planning in this document is not
meant to be complete, and has expectations of further development after initial implementation
described here.

Loading of Untrusted Resources

Problem
When Node.js loads code to be evaluated by require(), eval(), or other means, Node.js has
no policy mechanism to declare the loaded resource as untrusted or trusted. As a result, all
code running into a node process has the ability to load and run additional arbitrary code using
eval() (or its equivalents). All code with file system write access may achieve the same thing
by writing to new or existing files which are loaded via require(). These capabilities provide a
powerful attack vector for circumventing security precautions in Node.js applications.

Dynamic loading of resources is intrinsic to the programming model used by Node.js
applications. As such, it is not possible to determine all potential resources used ahead of time
to verify the program signature at startup. Instead, resources must be verified as they are
loaded.



Dangerous API Access

Problem
Code loaded into Node.js applications may perform operations which are considered dangerous
for security, deprecation, or other reasons. The effort required to audit a JavaScript resource
partially depends on said resource’s access to these dangerous operations. By limiting and
tracking a loaded resource’s access to these operations, we can remove potential attack vectors
from said resource. In this way, we can improve the efficiency and reliability of security audits.

API concerns exist at various levels and need to be approached in different ways. Approaches
to different concerns are listed in the sections below and intended to allow investigations of
discrete topics when performing security audits.



Code Signing

Enables
● Module Auditing in Isolation
● Verification of Signatory
● Revocation of Trust

Description
Using signatures and OS level integrations with key chains, Node.js can create policies
enforcing that well known resources are signed by well known signatories. When checked, code
signing can assert that content is unchanged from the time of signing. For any resource loaded
into the process, a digital signature could be verified for the contents of the resource. This
allows contents to be audited by a signatory and passed to other parties. For any given
signature, trust may be revoked due to expiration, security, or other concerns.

Implementation Concerns
When implementing a code signing infrastructure, different responses may be applied when a
check fails. It should be configurable whether a failed check results in a warning, thrown error,
or immediate process exit.

Due to the differences in OS APIs for runtime based code signing, a variety of metadata needs
to be configured by the users who ultimately run an application. This metadata must be stored
for verification purposes and includes but is not limited to:

● Public Key/Chain of Key Pair used to sign a Resource
● Location of a Resource
● Signature of a Resource

Implementation Planning
1. Implement a manifest format for packages which records the data necessary to verify the

signatures of resources contained within said package.
a. Likely can copy most work from HTTP Signed Exchange "Signature:" header

2. Allow manifests to be loaded at start of Node.js bootstrapping via an environment
variable or command line flag. Something like node --code-signing

./manifest.json main.js

a. Only accept file paths to manifests.
b. No manifests should be loaded after bootstrapping.

https://wicg.github.io/webpackage/draft-yasskin-httpbis-origin-signed-exchanges-impl.html#rfc.section.3.1


c. No runtime JS API for this should be exposed for this feature.
d. Allow Integrity Checks on manifests via an environment variable or command line

flag.
3. Perform a verification check inside of CJS Module wrapping, before mutating code and

compiling to JS.



Subresource Integrity Checks

Enables
● Cross Module Auditing
● Module Auditing in Isolation

Description
Subresource integrity allows for exact matching of source text content without needing to use a
signatory, but cannot be trusted without a secure way to verify the root integrity of an
application. This may be sufficient if the means of passing in the root integrity is considered
safe, but is not sufficient for all scenarios in which Node.js may be used.

A signatory may be unable to sign their own resource’s dependencies, due to these
dependencies originating from an external source. Despite this limitation, they may wish to
provide a signature which establishes their trust in both their own resource and said resource’s
dependencies.

A concrete example of this would be the following scenario:
● Alice signs her module A
● Bob signs his module B
● Alice wishes her signature on module A to be valid only for a specific version of B

With naive code signing (without subresource integrity checks), Alice’s signature could only
depend on the contents of A, without regard for A’s dependencies, and Bob would be able to
update B in a way that Alice considers untrusted (most likely due to B's update not yet being
audited). If A uses privileged APIs and makes calls to B in the data path to these APIs or
otherwise exposes these APIs to B, then the trustworthiness of A depends on the
trustworthiness of B. Alice will thus wish to audit B, and make her signature of A depend on an
audited version of B.

For any resource, Node.js should be able to consume a digest produced by one resource to
verify the expectation of loading another resource.

Implementation Concerns
There is currently no clear way to pass subresource integrity checks via JS source text in ESM.



Advances in cryptographic technology may result in particular digest algorithms being
deprecated and replaced. As a result, the particular algorithms preferred for subresource
integrity checks will likely change over time. A hard cutoff on the acceptance of one algorithm
and migration to an alternative algorithm would likely be a strain on the package ecosystem; for
this reason, simultaneous support of multiple digests would be advantageous. When signing
infrastructure supports the use of both an older and a newer digest, signatories can establish a
“sliding window” permitting the continued use of a deprecated digest during a limited upgrade
period. This removes the need for a simultaneous, ecosystem-wide effort to deprecate a given
digest algorithm. Such a capability is not required in the initial subresource integrity check
implementation, but any specified design should be forward compatible with such a feature.

Also, there is the possibility that an integrity check may intentionally wish to match multiple
dependency content bodies. This is not required for an initial implementation but should be
possible under any design specified.

Implementation Planning
1. We can reuse the same format as "integrity" metadata that browsers use.
2. CJS integrity checks can be implemented via options to require()

a. These checks should be out of band per TC39 and WHATWG designs
i. Implementing another composable manifest format

b. These checks must be validated even if the module comes from require.cache

c. This likely should also be an option that can be passed to require.resolve()

3. Seek assistance from TC39 on expanding this to work for ESM.
4. Allow integrity checks to be loaded at start of Node.js bootstrapping via an environment

variable or command line flag. Something like node --integrity ./manifest.json

main.js

https://www.w3.org/TR/SRI/#dfn-integrity-metadata
https://github.com/w3c/webappsec-subresource-integrity/issues


Removing Dangerous Features

Enables
● Removing need to audit various features at the process level

Description
An application may have no need for various features such as direct access to filesystem
bindings. It should be possible for an application to completely remove or disable such features
from its Node.js runtime, thus removing the need to audit for attack vectors which depend upon
the removed features.

Implementation Concerns
If features are disabled at runtime, there is the possibility of leaving references to privileged
APIs or resources in the application. Access to these references should be well defined even if
the feature is disabled. Audits will need to be vigilant that any such "dangling" references are
properly investigated even if features are disabled if using the runtime API. If revocable proxies
are used for permissioned userland APIs, there may be identity discontinuity when
non-permissioned internal usage of such APIs are used.

Implementation Planning
Please get involved in @addaleax's PR

https://github.com/nodejs/node/pull/22112


Constraining APIs

Enables
● Allows usage of dangerous features within a subset of loaded modules, without requiring

an audit of all modules for potential misuse of this feature.

Description
In many cases, more fine-grained control over access to dangerous APIs is necessary than
enabling or disabling them process-wide. As mentioned in the introduction, the usage of
potentially dangerous APIs is perfectly valid for Node.js applications. An application should be
able to make use of these APIs in a controlled way by only making them available to specific
resources with well-defined scopes.

Implementation Concerns
All of the concerns from Removing Dangerous Features apply here as well. In addition, since
this does not completely disable/remove privileged APIs, audits will still need check API access
across modules. Since this is done on a more granular basis than the process level, there
should be a mechanism to prevent privilege escalation (such as a package without filesystem
access directly loading another module with filesystem access.)

The implementation should allow a package to drop privileges and disable all bindings to
privileged resources which it received via a runtime API. This is a package-level equivalent to
the process-level privilege dropping discussed in Removing Dangerous Features. The benefits
are similar to those mentioned in that section; this could potentially allow audits to analyze
smaller portions of packages which make use of potentially dangerous APIs. Such a feature is
not required for an initial implementation, but any accepted design should accommodate this
possibility. If revocable proxies are used for permissioned userland APIs, there may be identity
discontinuity when comparing bindings across module boundaries.

Implementation Planning
1. Implement a manifest format for packages to declare the permissions they require.
2. Allow manifests to be loaded at start of Node.js bootstrapping via environment variable

or command line flag. (this could come from the same manifest as Code Signing)
a. Only accept file paths to manifests.
b. No manifests should be loaded after bootstrapping.
c. No runtime JS API for this should be exposed for this feature.



d. Allow Integrity Checks on manifests via environment variable or command line
flag.

3. Introduce compartments around all CJS modules using membranes to limit access to
privileged APIs (globals, results from require(), etc.)

4. Throw EPERM errors if require() ever loads a module in a package with escalated
privileges compared to the current package.



Freezing Primordials

Enables
● Auditors may investigate packages without needing to review potential taint from monkey

patching.

Description
The JS standard library and that of Node.js' core are able to be mutated by code loaded into the
process normally. This means that malicious code can potentially gain access to privileged data
or bindings by mutating these "primordials". Node.js should be able to prevent any mutation of
primordials.

Here is a concrete example of an attack which gains access to potentially privileged data
without direct access to the compromised API:

const https = require('https');

const createServer = https.createServer;

https.createServer = (...args) => {

// send TLS keys to insecure location

return createServer(...args);

};

Here is an example which patches the JS standard library rather than Node.js’ core:

const parse = JSON.parse

JSON.parse = (string) => {

if (string.includes(JSON.stringify('token'))) {

// send token JSON to insecure location

}

return parse(string);

};

Such patching lets libraries provide complex instrumentation and backporting of features without
host level support. These capabilities are of appreciable value but need to be constrained in
order to provide the protections needed to make auditing tractable.



Implementation Concerns
Lots of companies are patching core in order to achieve various profiling and instrumentation
capabilities which would not work with a frozen set of primordials. In addition, polyfills would
also be unable to be implemented on frozen primordials. Libraries providing these features tend
to be loaded as the first step of running applications. Handling these cases is a topic for future
research. There should be a way for trusted resources to be loaded ahead of the main app and
given the capability of mutating primordials, after which point primordials will be frozen and the
main application will be loaded.

APIs that suffer from the "override mistake" will be a source of slow down. Means of addressing
this should be investigated both via fixing the spec, and via vm implementation.

Implementation Planning
1. This is required and must be enabled for Constraining APIs to be feasible.
2. Allow primordials to be frozen at start of Node.js bootstrapping via an environment

variable or command line flag. Something like node --untaintable-builtins

main.js

a. Future variations could include something like node --primordial-mutation

polyfill.js main.js

https://youtu.be/lgAnL1swyns?t=45m12s


Future Considerations

Dangerous Data Retention

Problem
With the advent of increasing side channels to gather data from shared address spaces (such
as the Spectre and Meltdown attacks) there are increasing concerns about storing sensitive
data in processes running code. In addition, the ability to convert values into opaque references
that can be passed to resources without granting privileges is not new.

Related topics, such as research into Module Keys invested into to mitigate threats that are in
the same heap by techniques that turn sensitive data into opaque values. Other techniques to
hide data from the heap such as Secure Strings and Cross Origin Read Blocking should be
investigated for techniques to keep sensitive data outside of the shared address spaces of the
runtime.

User Interface To Security Policy Management

Problem
Sometimes users run programs without any privileges as a means to better ensure that a
program only uses the required permissions. By allowing users to run code without permissions
and then escalate permissions only when they are verified, users can gather context on why
permissions are needed. To provide one example, when running npm test it might be unclear
why filesystem access is required, but it could be clear that npm install does need filesystem
access in order to place packages into their installed locations. A means by which users may
alter the permissions of a running application should be possible via some sort of responsive
prompting mechanism.

https://github.com/tc39/tc39-module-keys
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=netframework-4.7.2
https://chromium.googlesource.com/chromium/src/+/master/services/network/cross_origin_read_blocking_explainer.md

