
Case study:
Popup with user-activation across browsers

mustaq@chromium.org, May 4 2017

Test details

Popups in different contexts
Popups without user activation (control)
Immediate calls from within event handlers
Calls from janky event handlers
Calls scheduled from within event handlers
Calls executed through a Promise
Calls from a subframe

Time-span of user activation state

Other observations
Input events allowing popups
Consumption of user activation state

With disabled popup blocker
Origin of the popups
Popups from simulated clicks

Open questions

Browsers utilize user gestures (or “user activation” as in the HTML spec) to filter out unwanted
use of abusable APIs. Opening popups (using window.open) is one such API for which
perhaps all browsers have some user activation based filtering. A list of all APIs in Chrome that
are user activation dependent is available here. Activation consumption differences among
browsers is covered in this explainer.

This document catalogs the similarities and differences between Chrome, Edge, Firefox and
Safari for popups with user activation. It seems that there are many inconsistencies between
these browsers even for this widely implemented user activation behavior. This observation
provides another justification for a simple user activation model that could converge the Web to
a predictable gesture behavior spanning all browsers in all platforms.

mailto:mustaq@chromium.org
https://html.spec.whatwg.org/#triggered-by-user-activation
https://docs.google.com/a/chromium.org/document/d/1mcxB5J_u370juJhSsmK0XQONG2CIE3mvu827O-Knw_Y/edit?usp=sharing
https://docs.google.com/document/d/1mohg6bRELWpW95NPq4V7IDJjjpWwMPWC6JNU-DAPYGg/edit?usp=sharing
https://docs.google.com/document/d/1pX8DN4iBNkl-OWA8Gv89a4oir1BBJXxlkn3O2bH1N4Q/edit


Test details
● We tested the following page in 5 browsers: Chrome (Android & Linux), Firefox (Android

& Linux), Edge (Windows 10) and Safari (iOS 10.2.1). The next section omits OSes
because no browser behaves differently in a different OS.

● The test page subframe has generous sandbox parameters (allow-scripts
allow-popups) to rule out additional filtering in the test.

● Test page: http://mustaqahmed.github.io/web/popup-with-user-activation.html

Popups in different contexts
We tested the six different “contexts” to trigger window.open calls. The following subsections
describe the similarities & differences we observed for the browsers in each context.

Popups without user activation (control)
We tested the following two control cases where the popup calls are triggered from outside
input-event handlers:

Control 1: Direct calls after the document is loaded.

Control 2: Calls made from a subframe in response to messages posted from main frame after
the document is loaded.

None of the browsers allows popups in these cases.

Immediate calls from within event handlers
All browsers allow popups directly from within input-event handlers provided that there is no
long delay, see next subsection.

(Note, however, that the type of allowed events vary between browsers, see the section on
event types below.)

Calls from janky event handlers
When input-event handlers are janky, we observed two different behaviors:

● Chrome stops allowing popups after approximately a second of jank.
● Edge, Firefox and Safari always allow popups, no matter how long the jank is.

Calls scheduled from within event handlers
When an input-event handler schedules a window.open call for later execution (through
window.setTimeout), Edge is different from the rest:

● Chrome, Firefox and Safari allow scheduling delayed calls, each upto a maximum delay
of one second.

● Edge doesn’t even allow such calls, even with a 0ms delay.

http://mustaqahmed.github.io/web/popup-with-user-activation.html


Chrome allows a “call” depth of 1, so a nested setTimeout call doesn’t allow popups. Firefox
seems to behave similarly. We didn’t test any other browsers.

Calls executed through a Promise
Popup calls executed through a Promise behave differently in all three browsers:

● Chrome allows such calls as long as the Promise is resolved within one second.
● Firefox never allows such calls, even when the Promise is resolved immediately.
● Edge and Safari always allow such calls, no matter how long it takes to resolve the

Promise.

Calls from a subframe
For window.open calls made from a subframe while responding to a post-message dispatched
from a main frame input-event handler:

● Chrome and Safari allow subframe popups initiated through main frame event handlers.
● Neither Firefox nor Edge support it.

Time-span of user activation state
There is no consistency among the browsers in how long the user activation state seem to
survive after a user action:

● For a slow event handlers, Chrome withstands up to one second of jank, but none of
Edge, Firefox & Safari have any time limit.
[Update 2017-08-29: Firefox now expires activation after 1 sec, as noted here.]

● For window.setTimeout, the limits seems to be exactly one second in Chrome,
Firefox & Safari. Edge doesn’t allow delayed calls.

● For Promise, Chrome again have a one-second limit. Edge & Safari have no limit.
Firefox doesn’t even allow such calls.

Other observations
Input events allowing popups
[Update 2018-06-20: here is a nearly exhaustive list covering all major browsers.]

We tested five input-events: mousedown, mouseup, touchstart, touchend and click.

● Edge allows from all 5 events.
● Chrome & Safari allow popups from mousedown, mouseup, touchend and click

events.
● Firefox allows from mouseup, touchend and click.

http://crbug.com/760848#c4
https://github.com/whatwg/html/issues/1903#issuecomment-325802724
https://docs.google.com/spreadsheets/d/1DGXjhQ6D3yZXIePOMo0dsd2agz0t5W7rYH1NwJ-QGJo/edit?usp=sharing


The events we tested is not exhaustive. For example, Chrome allows KeyboardEvents to
trigger popups, and has some accessibility related triggers too. We didn’t examine other
browsers beyond those 5 events, but it’s very unlikely that the set of all other triggers would be
consistent among them.

Also note that for any browser, a different set of events could be used to filter out another API
(say, fullscreen). So we can’t really say that a browser defines user activation as “the list of
events that can trigger popups”.

Consumption of user activation state
Here we tested whether a popup call consumes the user activation state to prevent repeated
calls from within the same context.

● Both Chrome & Edge consume the state. Safari started consuming from Safari 11 in
2017 [Update on 2017-11-27].

● Firefox doesn’t consume.

With disabled popup blocker

On a related note, when popup blocking is disabled through browser settings:

● Both Chrome & Edge allow many popups with/without activation.
● Safari 11.0.1 allow one popup with/without activation.
● Firefox allow many with/without activation.

Origin of the popups
To confirm if browsers filter popups differently depending on the link for the popup window, we
tried links with same and different origins (vs the caller).

● No browser differentiate between same- vs cross-origin popups.

Popups from simulated clicks
When a JS code simulates click, browsers are different in interpreting it as an user activation.

● Chrome & Firefox: simulated clicks can’t open popups.
● Edge: Can.
● Safari: ???

Open questions
We studied only the popup behavior, which is perhaps the oldest use of user activation. Yet the
major browsers don’t show a consistent behavior, making it hard for web developers to predict
the filtering outcomes. If we want to make at least the popup filtering behavior consistent across
browsers, we will need precise definitions for:

● User activation: which low level events define an user activation?
● Consuming: should popups consume an user activation at all?



● Time-span: should a browser pass the user activation state to delayed
popups/subframes/promises? If yes, what’s the time limit?

To solve the general problem of unpredictable user activation behavior, Chrome is considering a
simplified model that other browsers would possibly agree to implement (hence standardizable).
Details of the plan appears here.

https://docs.google.com/document/d/1pX8DN4iBNkl-OWA8Gv89a4oir1BBJXxlkn3O2bH1N4Q/edit

