Simple Bluetooth Programming
for Battle Bots

Purpose: This handout will show you the process I go through with my
students to create remote controlled battle bots. They are similar to
sumo-bots but a require more complex programming (than Sense
Line>Drive Forward> Smash) as each battle bot must be remotely
controlled using Bluetooth.

Step 1: Establish Bluetooth Control
There are many tutorials available on how to do this. My favorite is a

YouTube video available from Builder Dude 35 which can be found at:
http://bitly/27VORmMT

If you're unsure how to do this, I have prepared a separate handout
titled Establishing a Bluetooth Connection Between two EV3 Robots.

Step 2: Practice Simple Connection

To begin with [show my students how to write a program that has the
controller bot send a signal upon push of a button to the responder
robot and has the responder robot play a sound when it receives a
signal. This is a nice first step because there is no building involved. For
the sake of simplicity [have named my robots “controller” and
“responder”

Here is the program for the controller bot:

SandMessage |_

29

http://bit.ly/27VORmT

In this program I did the following:

1) Initiated Bluetooth connection between the controller and
responder robot. (They had already been connected earlier.)

2) Created a loop so I could send the command over and over again.

3) Waited for a push of the center button on the EV3.

4) Sent the numeric message “1” to the responder robot using
message title “1.”

5) Then I waited a second and repeated.

Let’s take a closer look at the Send Message icon.

Title of Message

, Name of Robot
Click here to Message is Being
choose Sent To

Send/Receive a
numeric, text,
or logic
message

Here’s the program for the responding robot:

| Repeat||

Raceive |
T N
I\'l

In this program I created two loops. The first waits to receive the
message “1” in a message titled “1.” (We will see later why using
message titles is important.) When it receives the message “1” it ends
the first loop and plays the “Cheering” sound. Then it loops to the
beginning and waits for the message again.

Step 3: Practice a Simple Switch to send Different Messages

In this program, [have
again initiated a
connection. Then I placed a
color switch inside a
forever loop. The color
switch is measuring color.
If it measures no color (the
default case) it sends a
numeric message of “0." If
it measures red it sends a
“1" and if it measures blue
it sends a “2." You could
expand to more colors by
adding another case in
vour switch. By having the
default “no color” option, |
help ensure that my
responding robot doesn't
say "red” or "blue” when
nothing is seen. [like
sending numeric
messages, but you could
easily send text message
containing the name of the
color instead.

ColorSendLoop

Here is the program for the responding program:

Say Recaived Color

In this program | have placed a
switch inside a loop. In front
of the switch is a Message icon
set to receive a numeric
message. The received
message is wired into a
number switch. If a “0" is
received (indicating no color)
then nothing happens and the
loop repeats. Ifa “1" is
received the robot says “Red”
and if a “2" is received the
robot says "Blue.” | made "0"
the default, to make sure the
robot says nothing if no color
is sensed.

Step 4: Programming a Fully Controllable Battle Bot

To begin with our controller bot is going to have a touch sensor attached
to Port 1. The Battle Bot is going to have left and right drive motors
attached to ports B and C respectively, and a medium motor wielding a
weapon of amazingness attached to port A. This is the most common
setup my students use with one EV3 Kkit; you can of course design any
controller/battler combination you like once you learn the basics. The
programs below are written for the robots I just described.

There are two loops with switches in this
first program. This is because the we
want to be able to run the "weapon”
connected to port A separately from the
drive motors.

The top loop is in “tabbed” view. This
means that all of the cases are arranged
in tabs, rather than vertically - this takes
up less space. After initiating Bluetooth
connection, a Brick Button switch is
placed inside the loop. The default is to
send the word “stop” if no button is
pushed. This is the simplest way I have
found for the Battle Bot to stop when
nothing is happening, If the top button is
pushed, the text message "forward” is
sent and so on with “reverse,” “left,” and
“right” for the corresponding buttons.

For this loop utilizing the touch sensor
please notice that the title of the message
has been set to “2." This allows clear
differentiation between the driving
commands and the weapon commands.
If the touch sensor is pushed in the
numeric message “0" is sent and if it is
not pushed in, the numeric message "0”
is sent.

| - \ -:::::l. W ﬁ | 1]l"j:::: B
|'. P vaas q=Cyl c.,.ﬁ_, B -.|_m|.

@t | el | el

»

.'l.'.'uapnn I|

|Weagcnﬂ

This is the responding program. [have left the first switch out of tabbed
view so you can see at least three of the options in the switch. Text
received via Bluetooth is wired into a numeric switch. The default is to
turn motors off if the word stop is received. Otherwise I have the
forward and reverse commands, and cut off are similar commands to
turn left or right. Also wired from the start icon (not wired following the
first infinite loop - it would never run that way) is a second loop with a
switch. This one is waiting for a numeric message in message title “2.” If

it’s “1” it turns the “A” motor on, if it'’s a “0” (default) it turns motor A off.

Extensions -

This is only one way of many to program a remote controlled ‘bot with
Bluetooth. You could use Tank Move for steering or add more conditions
or another touch sensor to allow you to control steering and driving
separately so you can turn forward or backward to the right or left.

You could also use the rotation sensor built into the EV3 motor on a
controller bot to vary the speed of the Battle Bot.

