
This proposal concerns the financing of the ongoing development of smoldot.

Overview: what is smoldot?..1
History and team.. 2

Delivery of the previous milestones...2
Project objectives, status, and direction... 3

Being a correct and secure implementation...3
Providing a good end user experience...4
Improving the infrastructure developers experience.. 5
Improving the developers’ experience..5
Building a new full node implementation (low priority)... 6

Quarterly milestones and budget... 6

Overview: what is smoldot?
This section contains a general presentation of the smoldot project and is present in every
smoldot treasury proposal. If you are already familiar with smoldot and its purpose, I invite
you to skip directly to the milestones delivery section.

A blockchain, such as the Polkadot blockchain, consists in two things: a certain state (e.g. a
list of accounts), and a peer-to-peer network. There exists only two ways to access the state:
either run a client software (such as the client software made by Parity Technologies) that
connects to this peer-to-peer network, or rely on something else running that client software
for you. In both cases, this client software is critically important.

Currently, most blockchain-related web applications or UIs connect to a trusted server (such
as with Infura or so-called JSON-RPC nodes) that runs the client software and acts as an
intermediary between the web application and the actual blockchain. In other words, the web
server "runs the client software for you”. This trusted server is a considerable security issue:
it can be hijacked and send bad information to the web application, can go down and leave
the web application non-functional, etc. Additionally, running these trusted servers incurs
significant complexity and maintenance costs. Getting rid of these trusted servers is one of
the primary objectives of building a decentralization blockchain.

The smoldot light client is a client software capable of connecting to the peer-to-peer
network. Compared to the official client, the smoldot light client intentionally provides fewer
capabilities (it cannot author blocks, vote for finality, or easily look at the history of the chain)
but is considerably lighter in terms of CPU, memory, and disk space consumption. Because
it is so light, the smoldot light client can be embedded within a web page in order for this web
page to establish a direct connection to the peer-to-peer network of the chain. This
eliminates the need to rely on a trusted server, and thus eliminates the security issue and
maintenance costs.

The smoldot GitHub repository can be found here: https://github.com/smol-dot/smoldot

https://infura.io/
https://github.com/paritytech/smoldot

I invite you to read the README of the GitHub repository if you are interested in more
details.

History and team
The smoldot project started in December 2019 by me, Pierre Krieger, the submitter of this
proposal, and is presently still driven entirely by me.
The project was initially started within Parity Technologies. Since February 2023, it has been
financed through treasury proposals.

Pierre worked for Parity Technologies for roughly 5 years, between 2017 and 2022. At the
time of writing of this text, he is the third biggest contributor to Substrate with 623 pull
requests and the biggest contributor to rust-libp2p with 640 pull requests. He initially started
and led the peer-to-peer networking team in addition to contributing to other parts of
Substrate (e.g. HTTP requests in offchain workers). Pierre is likely one of the most
knowledgeable people when it comes to how the Polkadot client works.

Before and during his time at Parity Technologies, Pierre has also led several other open
source projects, such as vulkano (3.6k GitHub stars), glium (3.1k GitHub stars), glutin (1.8k
GitHub stars), or redshirt (1.4k GitHub stars).

- GitHub profile: https://github.com/tomaka/
- E-mail address: pierre.krieger1708@gmail.com
- Matrix account: @tomaka17:matrix.org
- DOT address (for anything smoldot-related):

15kgSF6oSMFeaN7xYAykihoyQFZLRu1cF5FaBdiSDHJ233H5

At the time of the writing of this text, the smoldot repository contains 133k lines of Rust
source code. Despite its size and the overall complexity of writing a client implementation,
the source code is overall well organized, of good quality, reasonably well documented, and
no large-scale refactoring is likely to ever be needed. It is unlikely for any major blocker to be
encountered in the future with regards to implementing a specific feature. Additionally, the
list of open issues is actively maintained, and the size of the backlog is reasonable.

One of the main issues that smoldot could potentially face is the fact that it is being built only
by one person. However, it should be considered that the code of smoldot is reasonably
clear and reasonably well documented, making it relatively easy for someone else to take
over if it ever becomes necessary. Furthermore, smoldot is nothing more than source code,
licensed under GPL3. Anyone can legally fork the code and continue working on it
themselves.

Delivery of the previous milestones
This is not the first proposal for the financing of the development of smoldot. The previous
proposal can be found here.

https://github.com/smol-dot/smoldot/#readme
http://github.com/tomaka/
https://github.com/paritytech/substrate/pulls?q=is%3Apr+author%3Atomaka
https://github.com/paritytech/substrate/pulls?q=is%3Apr+author%3Atomaka
https://github.com/libp2p/rust-libp2p/pulls?q=is%3Apr+author%3Atomaka+
https://github.com/paritytech/substrate/pull/3447
https://github.com/vulkano-rs/vulkano
https://github.com/glium/glium
https://github.com/rust-windowing/glutin
https://github.com/tomaka/redshirt/
https://github.com/tomaka/
mailto:pierre.krieger1708@gmail.com
https://explorer.polkascan.io/polkadot/account/15kgSF6oSMFeaN7xYAykihoyQFZLRu1cF5FaBdiSDHJ233H5
https://docs.google.com/document/d/1iYOIe_pyOdnV27hUA6FToWVSs7uUNHxIm5bA3KrMAE8

The table below recapitulates the milestones from the previous treasury proposal and
presents the work that has been done. Keep in mind that work is still happening as this
proposal is being discussed, and as such the table below might be missing some items.

Title and work done Remarks

General maintenance of the project

Too many changes to list reasonably, see
https://github.com/smol-dot/smoldot/commits/main?branch
=main for the full list of commits.
I also invite you to look at the CHANGELOG. Keep in
mind, however, that the CHANGELOG doesn’t cover
internal changes.

Noteworthy changes include updating to
changes in the JSON-RPC specification, better
loading times, and another refactoring of the
JSON-RPC server.

The full node has also seen significant
changes, but note that the hours I have spent
working on the full node weren’t part of the
proposal.

Try add support for running smoldot in a web
worker/worker thread

#499, #489, #491, #494 (main proof of concept), #504,
#505, #511, #517, #524, #528, #529, #532, #538

Smoldot can now run in a web worker/worker
thread by doing the execution in the
background and sending/receiving messages
with the foreground. As suspected, support for
multithreading can’t be done yet because it is
blocked by third parties (Firefox and Rust), but
smoldot is ready to add support very quickly
once unblocked.

Implement support for child tries

#631, #639, #669, #670, #673, #678, #680, #684, #743,
#752, #763, #722

Smoldot now supports child tries! As expected,
this was quite complicated due to the full node
prototype getting in the way, and due to the
lack of documentation about how child tries
work.

Cache the runtime code of the chain in order to
speed up connecting to a chain

#863

Done! Here again smoldot was blocked by third
parties taking more time than expected. In
order to be unblocked, I ended up
implementing this feature in a sub-optimal way
that might lead to more cache misses.

Project objectives, status, and direction
In the last three months, smoldot has been integrated in two additional note-worthy projects
(that I know of):

- SubXT
- Cumulus (parachain full nodes can use smoldot in order to connect to the relay

chain)

It was furthermore mentioned in several talks of Polkadot decoded, and was the main
topic of one of the talks.

https://github.com/smol-dot/smoldot/commits/main?branch=main
https://github.com/smol-dot/smoldot/commits/main?branch=main
https://github.com/smol-dot/smoldot/blob/main/wasm-node/CHANGELOG.md
https://github.com/paritytech/json-rpc-interface-spec/
https://github.com/smol-dot/smoldot/pull/640
https://github.com/smol-dot/smoldot/pull/640
https://github.com/smol-dot/smoldot/pull/793
https://github.com/smol-dot/smoldot/pull/793
https://github.com/smol-dot/smoldot/pull/499
https://github.com/smol-dot/smoldot/pull/489
https://github.com/smol-dot/smoldot/pull/491
https://github.com/smol-dot/smoldot/pull/494
https://github.com/smol-dot/smoldot/pull/504
https://github.com/smol-dot/smoldot/pull/505
https://github.com/smol-dot/smoldot/pull/511
https://github.com/smol-dot/smoldot/pull/517
https://github.com/smol-dot/smoldot/pull/524
https://github.com/smol-dot/smoldot/pull/528
https://github.com/smol-dot/smoldot/pull/529
https://github.com/smol-dot/smoldot/pull/532
https://github.com/smol-dot/smoldot/pull/538
https://bugzilla.mozilla.org/show_bug.cgi?id=1467846
https://github.com/rust-lang/rust/pull/112922
https://github.com/smol-dot/smoldot/pull/631
https://github.com/smol-dot/smoldot/pull/639
https://github.com/smol-dot/smoldot/pull/669
https://github.com/smol-dot/smoldot/pull/670
https://github.com/smol-dot/smoldot/pull/673
https://github.com/smol-dot/smoldot/pull/678
https://github.com/smol-dot/smoldot/pull/680
https://github.com/smol-dot/smoldot/pull/684
https://github.com/smol-dot/smoldot/pull/743
https://github.com/smol-dot/smoldot/pull/752
https://github.com/smol-dot/smoldot/pull/763
https://github.com/smol-dot/smoldot/pull/722
https://github.com/smol-dot/smoldot/pull/863
https://forum.polkadot.network/t/state-trie-migration/852/12
https://forum.polkadot.network/t/state-trie-migration/852/12
https://github.com/paritytech/subxt/pull/965
https://github.com/paritytech/cumulus/pull/2270
https://events.polkadot.network/event/polkadot-decoded-2023/planning/UGxhbm5pbmdfMTQwODEwNQ==

The smoldot project is following five main high-level objectives: being a correct and secure
implementation, providing a good end user experience, improving the infrastructure
developers experience, improving the developers’ experience, and building a new full node
implementation.
Let’s take a look at the status of each of these objectives, and how smoldot plans to fulfill
them in the long term.

Being a correct and secure implementation
The most important objective of smoldot is to conform to the Polkadot protocol.

This objective is as a whole generally fulfilled. Unfortunately, it is sometimes hard to know
whether smoldot behaves as it should because the official specification is still very
incomplete. The recent creation of the RFCs repository is however a good step towards
formalizing changes to the specification.

It would be desirable for smoldot to undergo an audit in the future. I would be happy to
collaborate with an auditing company that would be willing to audit the source code
of smoldot. I am also, more generally, happy to answer any technical question concerning
aspects of the source code.

Providing a good end user experience
While end users are normally not directly using smoldot, they are using software that relies
on smoldot. For example, the PolkadotJS UI or the staking dashboard both have an option
that allows using smoldot to connect to the chain. The ultimate end goal is for all
Polkadot/Kusama/… UIs and all parachain UIs to use a light client such as smoldot.
As such, if smoldot is slow, the UI is slow as well.

After the latest changes (#529, #532), users of smoldot now have the possibility to run it
in the background. This significantly improves the user experience by removing the small
stutters that browsers experience when running smoldot in the foreground.

An important part in improving the user experience is the design and integration of the new
JSON-RPC API. Early June, I opened a forum thread in order to provide an overview and
ask for feedback. I have since then received good feedback, and my general opinion is that
the API is very close to being stabilized.

Now that #92 has been done, the smoldot initialization no longer downloads 1.2 MiB every
single time it connects to a chain. This saves a few hundred milliseconds depending on the
speed of the end user’s connection.

The time it takes between the start of the smoldot Rust code and the end of the warp
syncing is around 850ms on my machine, assuming an up-to-date database. Around 50ms
to 100ms could be saved by using WebRTC instead of WebSocket as the protocol to
connect to the network (currently blocked by Substrate), and another 100ms to 150ms could
be saved by doing some refactoring to the warp syncing code of smoldot.

https://github.com/w3f/polkadot-spec
https://github.com/polkadot-fellows/RFCs/
http://polkadot.js.org/apps/
https://staking.polkadot.network/
https://github.com/smol-dot/smoldot/pull/529
https://github.com/smol-dot/smoldot/pull/532
https://github.com/paritytech/json-rpc-interface-spec/
https://github.com/paritytech/json-rpc-interface-spec/
https://forum.polkadot.network/t/new-json-rpc-api-mega-q-a/3048
https://github.com/smol-dot/smoldot/issues/92
https://github.com/paritytech/substrate/pull/12529
https://github.com/smol-dot/smoldot/issues/864

Improving the infrastructure developers experience
The objective of smoldot is to eliminate the need for JSON-RPC nodes. This has the side
effect of removing the burden of having to deploy and maintain these JSON-RPC nodes for
the teams building parachains.

Nothing much has changed compared to the previous proposal. Smoldot is currently still
waiting for the WebRTC feature to be implemented in Substrate. As explained in the
previous proposal, the end goal for smoldot is to be able to “magically” connect to any
parachain without any manual intervention.

Improving the developers’ experience
Smoldot has re-implemented many Substrate features, sometimes in a way that makes them
more simple to use externally.

For example, support for child tries has recently been added to smoldot, allow the Ink! team
to use chopsticks to test contracts.

If you are a developer in need of specialized tools that Substrate doesn’t provide, or
that Substrate does provide but in a way that is too difficult to use, feel free to open
an issue or discussion in the smoldot repository.

As an example, such a tool could be a small program that connects to a specific IP address
and port, and prints the PeerId and software version of the Substrate node that it finds.

Building a new full node implementation
While most of the development of smoldot focuses around its light client, the smoldot
repository also contains a prototype of a full node built upon the same primitives that the light
client uses.

Having multiple functional full node implementations would be a good thing for the Polkadot
network, as it would reduce the risk that the network collapses in case of a bug or security
issue in the unique client.

Previously, very little effort was spent on improving the smoldot work-in-progress full node
implementation. In this proposal and future ones, however, I would like to focus a bit more on
it. While implementing a relay chain validator would be a very difficult endeavor for a single
person, implementing a full node (non-validator) or a parachain collator is a realistic
long-term goal.

Quarterly milestones and budget
Based on the directions laid out in the previous section, work items for the next three months
have been picked. The choice of these work items was done based on what seems to me to

https://github.com/paritytech/substrate/pull/12529
https://github.com/paritytech/cargo-contract/issues/988
https://github.com/paritytech/cargo-contract/issues/988

be the highest priority. However, I am totally open to feedback if you think that priority
should be put somewhere else.

This proposal covers three months of work, from August to October, after which a new
proposal will be submitted.

An hourly rate of 300 € is applied.

General maintenance of the project:

- Fix panics and/or security issues that may arise
- Fix quality of life issues
- Fix overly-high computational complexity issues
- Improve the project-wide documentation and code

readability
- Keep dependencies up-to-date

A lot of changes are either unpredictable at the moment, or are too small to be
their own milestone. See the previous milestone delivery for examples.

80 hours 24 000 €

Research and implement a proper discovery and peering
process

The strategy for discovering nodes and choosing which peers to connect to is
currently not very refined. It turns out that this is a difficult problem for a variety
of reasons. For this reason, it is currently not clear whether smoldot is always
capable of reconnecting after an Internet connectivity outage.

60 hours 18 000 €

Refactor and fix all the remaining issues in the warp syncing
code

Several open issues (#864, #67, #119, #131) require changes to the warp
syncing code. The warp syncing code has gone through many iterations in the
past and is suffering from technical debt. It is time to refactor it and fix all the
open issues.

60 hours 18 000 €

Implement the new JSON-RPC and the most-commonly called
legacy JSON-RPC functions in the full node

This is a step towards having a usable full node.

40 hours 12 000 €

Total 240 hours 72 000 €

The exact amount in DOTs will be calculated when the proposal is submitted on chain using
the 7-days average found on subscan and the current USD <-> EUR exchange rate found
on xe.com. The destination address is
15kgSF6oSMFeaN7xYAykihoyQFZLRu1cF5FaBdiSDHJ233H5.

Please note that these milestones are provided as a best effort estimate, and the reality
might differ. This proposal assumes a certain level of trust, and an emphasis is made on
code quality rather than delivering the milestones at any cost. The actual work that has been
performed will be showcased in the treasury proposal asking to fund the next 3-months
period. If you were to be unsatisfied with my work, I am open to discussing the way I focus
my efforts.

https://github.com/smol-dot/smoldot/issues/864
https://github.com/smol-dot/smoldot/issues/67
https://github.com/smol-dot/smoldot/issues/119
https://github.com/smol-dot/smoldot/issues/131
https://polkadot.subscan.io/tools/charts?type=price
https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD
https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD

