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Chapter 1 - Map Reduce 

The rise of aggregate oriented databases is in large part due to the growth of clusters. Running on a cluster 

means you have to make your tradeoffs in data storage differently than when running on a single machine. 

Clusters don’t just change the rules for data storage they also change the rules for computation. If you 

store lots of data on a cluster, processing that data efficiently means you have to think differently about 

how you organize your processing.  

With a centralized database, there are generally two ways you can run the processing logic against it: 

either on the database server itself or on a client machine. Running it on a client machine gives you more 

flexibility in choosing a programming environment, which usually makes for programs that are easier to 

create or extend. If you need to hit a lot of data, then it makes sense to do the processing on the server, 

paying the price in programming convenience and increasing the load on the database server.  

When you have a cluster, there is good news immediately you have lots of machines to spread the 

computation over. However, you also still need to try to reduce the amount of data that needs to be 

transferred across the network by doing as much processing as you can on the same node as the data it 

needs.  

The map-reduce pattern is a way to organize processing in such a way as to take advantage of multiple 

machines on a cluster while keeping as much processing and the data it needs together on the same 

machine. It first gained prominence with Google’s Map Reduce framework .A widely used open-source 

implementation is part of the Hadoop project, although several databases include their own 

implementations. As with most patterns, there are differences in detail between these implementations, so 

we’ll concentrate on the general concept. The name “map-reduce” reveals its inspiration from the map 

and reduce operations on collections in functional programming languages.  

1.1 Basic Map-Reduce  
To explain the basic idea, we’ll start from an example we’ve already flogged to death that of customers 

and orders. Let’s assume we have chosen orders as our aggregate, with each order having line items. Each 

line item has a product ID, quantity, and the price charged. This aggregate makes a lot of sense as usually 

people want to see the whole order in one access. We have lots of orders, so we’ve sharded the dataset 

over many machines.  

However, sales analysis people want to see a product and its total revenue for the last seven days.  

This is exactly the kind of situation that calls for map-reduce. The first stage in a map-reduce job is the 

map. A map is a function whose input is a single aggregate and whose output is a bunch of key- value 
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pairs. In this case, the input would be an order. The output would be key-value pairs corresponding to the 

line items. Each one would have the product ID as the key and an embedded map with the quantity and 

price as the values (see Figure 1.1).  

 

 
 

Figure 1.1. A map function reads records from the database and emits key-value pairs.  

 
Each application of the map function is independent of all the others. This allows them to be safely 

parallelizable, so that a map-reduce framework can create efficient map tasks on each node and freely 

allocate each order to a map task. This yields a great deal of parallelism and locality of data access. For 

this example, we are just selecting a value out of the record, but there’s no reason why we can’t carry out 

some arbitrarily complex function as part of the map providing it only depends on one aggregate’s worth 

of data.  

A map operation only operates on a single record; the reduce function takes multiple map outputs with the 

same key and combines their values.  

So, a map function might yield 1000 line items from orders for “Database Refactoring”; the reduce 

function would reduce down to one, with the totals for the quantity and revenue. While the map function 

is limited to working only on data from a single aggregate, the reduce function can use all values emitted 

for a single key (see Figure 1.2).  

The map-reduce framework arranges for map tasks to be run on the correct nodes to process all the 

documents and for data to be moved to the reduce function. To make it easier to write the reduce function, 

the framework collects all the values for a single pair and calls the reduce function once with the key and 

the collection of all the values for that key. So to run a map-reduce job, you just need to write these two 

functions.  
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Figure 1.2. A reduce function takes several key-value pairs with the same key and aggregates them into one.  

1.2 Partitioning and Combining  
In the simplest form, we think of a map-reduce job as having a single reduce function. The outputs from 

all the map tasks running on the various nodes are concatenated together and sent into the reduce. While 

this will work, there are things we can do to increase the parallelism and to reduce the data transfer(see 

figure 1.3)  

The first thing we can do is increase parallelism by partitioning the output of the mappers. Each reduce 

function operates on the results of a single key. This is a limitation it means you can’t do anything in the 

reduce that operates across keys but it’s also a benefit in that it allows you to run multiple reducers in 

parallel. To take advantage of this, the results of the mapper are divided up based the key on each 

processing node. Typically, multiple keys are grouped together into partitions. The framework then takes 

the data from all the nodes for one partition, combines it into a single group for that partition, and sends it 

off to a reducer. Multiple reducers can then operate on the partitions in parallel, with the final results 

merged together. (This step is also called “shuffling,” and the partitions are sometimes referred to as 

“buckets” or “regions.”)  
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Figure 1.3. Partitioning allows reduce functions to run in parallel on different keys.  

The next problem we can deal with is the amount of data being moved from node to node between the 

map and reduce stages. Much of this data is repetitive, consisting of multiple key-value pairs for the same 

key. A combiner function cuts this data down by combining all the data for the same key into a single 

value (see Figure 1.4). A combiner function is, in essence, a reducer function—indeed, in many cases the 

same function can be used for combining as the final reduction. The reduce function needs a special shape 

for this to work: Its output must match its input. We call such a function a combinable reducer. 

 

Figure 1.4. Combining reduces data before sending it across the network.  

 

Not all reduce functions are combinable. Consider a function that counts the number of unique customers 
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for a particular product. The map function for such an operation would need to emit the  

product and the customer. The reducer can then combine them and count how many times each customer 

appears for a particular product, emitting the product and the count (see Figure 1.5). But this reducer’s 

output is different from its input, so it can’t be used as a combiner. You can still run a combining function 

here: one that just eliminates duplicate product-customer pairs, but it will be different from the final 

reducer.  

 

 

Figure 1.5. This reduce function, which counts how many unique customers order a particular tea, is not combinable. 

When you have combining reducers, the map-reduce framework can safely run not only in parallel (to 

reduce different partitions), but also in series to reduce the same partition at different times and places. In 

addition to allowing combining to occur on a node before data transmission, you can also start combining 

before mappers have finished. This provides a good bit of extra flexibility to the map-reduce processing. 

Some map-reduce frameworks require all reducers to be combining reducers, which maximizes this 

flexibility. If you need to do a noncombining reducer with one of these frameworks, you’ll need to 

separate the processing into pipelined map-reduce steps.  

1.3 Composing Map-Reduce Calculations  
The map-reduce approach is a way of thinking about concurrent processing that trades off flexibility in 

how you structure your computation for a relatively straightforward model for parallelizing the 

computation over a cluster. Since it’s a tradeoff, there are constraints on what you can do in your 

calculations. Within a map task, you can only operate on a single aggregate. Within a reduce task, you can 

only operate on a single key. This means you have to think differently about structuring your programs so 

they work well within these constraints.  

One simple limitation is that you have to structure your calculations around operations that fit in well with 

the notion of a reduce operation. A good example of this is calculating averages. Let’s consider the kind 

of orders we’ve been looking at so far; suppose we want to know the average ordered quantity of each 
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product. An important property of averages is that they are not comparable.  

that is, if I take two groups of orders, I can’t combine their averages alone. Instead, I need to take total 

amount and the count of orders from each group, combine those, and then calculate the average from the 

combined sum and count (see Figure 1.6).  

 

 

Figure 1.6. When calculating averages, the sum and count can be combined in the reduce calculation, but the average 

must be calculated from the combined sum and count.  

This notion of looking for calculations that reduce neatly also affects how we do counts. To make a count, 

the mapping function will emit count fields with a value of 1, which can be summed to get a total count 

(see Figure 1.7).  

 

 

Figure 1.7. When making a count, each map emits 1, which can be summed to get a total.  

 

 

1.4 A Two Stage Map-Reduce Example  
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As map-reduce calculations get more complex, it’s useful to break them down into stages using a 

pipes-and-filters approach, with the output of one stage serving as input to the next, rather like the 

pipelines in UNIX.  

Consider an example where we want to compare the sales of products for each month in 2011 to the prior 

year. To do this, we’ll break the calculations down into two stages. The first stage will produce records 

showing the aggregate figures for a single product in a single month of the year. The second stage then 

uses these as inputs and produces the result for a single product by comparing one month’s results with 

the same month in the prior year (see Figure 1.8). 

 

 

Figure 1.8. A calculation broken down into two map-reduce steps, which will be expanded in the next three figures 

A first stage (Figure 1.9) would read the original order records and output a series of key-value pairs for 

the sales of each product per month.  
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Figure 1.9. Creating records for monthly sales of a product  

This stage is similar to the map-reduce examples we’ve seen so far. The only new feature is using a 

composite key so that we can reduce records based on the values of multiple fields.  

The second-stage mappers (Figure 1.10) process this output depending on the year. A 2011 record 

populates the current year quantity while a 2010 record populates a prior year quantity. Records for earlier 

years (such as 2009) don’t result in any mapping output being emitted.  

 
Figure 1.10. The second stage mapper creates base records for year-on-year comparisons. 

 

The reduce in this case (Figure 1.11) is a merge of records, where combining the values by summing 

allows two different year outputs to be reduced to a single value (with a calculation based on the reduced 

values thrown in for good measure).  
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Figure 1.11. The reduction step is a merge of incomplete records.  

Decomposing this report into multiple map-reduce steps makes it easier to write. Like many 

transformation examples, once you’ve found a transformation framework that makes it easy to compose 

steps, it’s usually easier to compose many small steps together than try to cram heaps of logic into a single 

step.  

Another advantage is that the intermediate output may be useful for different outputs too, so you can get 

some reuse. This reuse is important as it saves time both in programming and in execution. The 

intermediate records can be saved in the data store, forming a materialized view (“Materialized Views,” p. 

30). Early stages of map-reduce operations are particularly valuable to save since they often represent the 

heaviest amount of data access, so building them once as a basis for many downstream uses saves a lot of 

work. As with any reuse activity, however, it’s important to build them out of experience with real 

queries, as speculative reuse rarely fulfills its promise. So it’s important to look at the forms of various 

queries as they are built and factor out the common parts of the calculations into materialized views.  

Map-reduce is a pattern that can be implemented in any programming language. However, the constraints 

of the style make it a good fit for languages specifically designed for map-reduce computations. Apache 

Pig [Pig], an offshoot of the Hadoop [Hadoop] project, is a language specifically built to make it easy to 

write map-reduce programs. It certainly makes it much easier to work with Hadoop than the underlying 

Java libraries. In a similar vein, if you want to specify map- reduce programs using an SQL-like syntax, 

there is hive [Hive], another Hadoop offshoot.  

The map-reduce pattern is important to know about even outside of the context of NoSQL databases. 

Google’s original map-reduce system operated on files stored on a distributed file system an approach 

that’s used by the open-source Hadoop project. While it takes some thought to get used to the constraints 
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of structuring computations in map-reduce steps, the result is a calculation that is inherently well-suited to 

running on a cluster. When dealing with high volumes of data, you need to take a cluster-oriented 

approach. Aggregate-oriented databases fit well with this style of calculation. We think that in the next 

few years many more organizations will be processing the volumes of data that demand a cluster-oriented 

solution—and the map-reduce pattern will see more and more use.  

1.5 Incremental Map-Reduce  
The examples we’ve discussed so far are complete map-reduce computations, where we start with raw 

inputs and create a final output. Many map-reduce computations take a while to perform, even with 

clustered hardware, and new data keeps coming in which means we need to rerun the computation to keep 

the output up to date. Starting from scratch each time can take too long, so often it’s useful to structure a 

map-reduce computation to allow incremental updates, so that only the minimum computation needs to be 

done.  

The map stages of a map-reduce are easy to handle incrementally only if the input data changes does the 

mapper need to be rerun. Since maps are isolated from each other, incremental updates are 

straightforward.  

The more complex case is the reduce step, since it pulls together the outputs from many maps and any 

change in the map outputs could trigger a new reduction. This recomputation can be lessened depending 

on how parallel the reduce step is. If we are partitioning the data for reduction, then any partition that’s 

unchanged does not need to be re-reduced. Similarly, if there’s a combiner step, it doesn’t need to be rerun 

if its source data hasn’t changed. 

If our reducer is combinable, there’s some more opportunities for computation avoidance. If the changes 

are additive that is, if we are only adding new records but are not changing or deleting any old records 

then we can just run the reduce with the existing result and the new additions. If there are destructive 

changes, that is updates and deletes, then we can avoid some recomputation by breaking up the reduce 

operation into steps and only recalculating those steps whose inputs have changed essentially, using a 

Dependency Network [Fowler DSL] to organize the computation.  

The map-reduce framework controls much of this, so you have to understand how a specific framework 

supports incremental operation.  

Chapter 2 - Key-Value Databases  
A key-value store is a simple hash table, primarily used when all access to the database is via primary key. 

Think of a table in a traditional RDBMS with two columns, such as ID and NAME, the ID column being 

the key and NAME column storing the value. In an RDBMS, the NAME column is restricted to storing 
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data of type String. The application can provide an ID and VALUE and persist the pair; if the ID already 

exists the current value is overwritten, otherwise a new entry is created. Let’s look at how terminology 

compares in Oracle and Riak.  

 

 

2.1 What Is a Key-Value Store  
Key-value stores are the simplest NoSQL data stores to use from an API perspective. The client can either 

get the value for the key, put a value for a key, or delete a key from the data store. The value is a blob that 

the data store just stores, without caring or knowing what’s inside; it’s the responsibility of the application 

to understand what was stored. Since key-value stores always use primary-key access, they generally have 

great performance and can be easily scaled.  

Some of the popular key-value databases are Riak [Riak], Redis (often referred to as Data Structure 

server) [Redis], Memcached DB and its flavors [Memcached], Berkeley DB [Berkeley DB], HamsterDB 

(especially suited for embedded use) [HamsterDB], Amazon DynamoDB [Amazon’s Dynamo] (not 

open-source), and Project Voldemort [Project Voldemort] (an open-source implementation of Amazon 

DynamoDB).  

In some key-value stores, such as Redis, the aggregate being stored does not have to be a domain 

object—it could be any data structure. Redis supports storing lists, sets, hashes and can do range, diff, 

union, and intersection operations. These features allow Redis to be used in more different ways than a 

standard key-value store.  

There are many more key-value databases and many new ones are being worked on at this time. For the 

sake of keeping discussions in this book easier we will focus mostly on Riak. Riak lets us store keys into 

buckets, which are just a way to segment the keys—think of buckets as flat namespaces for the keys.  

If we wanted to store user session data, shopping cart information, and user preferences in Riak, we could 

just store all of them in the same bucket with a single key and single value for all of these objects. In this 

scenario, we would have a single object that stores all the data and is put into a single bucket (Figure 2.1).  
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Figure 2.1. Storing all the data in a single bucket 

The downside of storing all the different objects (aggregates) in the single bucket would be that one 

bucket would store different types of aggregates, increasing the chance of key conflicts. An alternate 

approach would be to append the name of the object to the key, such as 288790b8a421_userProfile, so 

that we can get to individual objects as they are needed.  

 
Figure 2.2. Change the key design to segment the data in a single bucket. 

We could also create buckets which store specific data. In Riak, they are known as domain buckets 

allowing the serialization and deserialization to be handled by the client driver.  

Bucket bucket = client.fetchBucket(bucketName).execute();  

DomainBucket<UserProfile> profileBucket = DomainBucket.builder(bucket, UserProfile.class).build();  

Using domain buckets or different buckets for different objects (such as UserProfile and ShoppingCart) 

segments the data across different buckets allowing you to read only the object you need without having 

to change key design.  

Key-value stores such as Red is also support storing random data structures, which can be sets, hashes, 

strings, and so on. This feature can be used to store lists of things, like states or address Types, or an array 
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of user’s visits.  

2.1.1 Key-Value Store Features  
While using any NoSQL data stores, there is an inevitable need to understand how the features compare 

to the standard RDBMS data stores that we are so used to. The primary reason is to understand what 

features are missing and how does the application architecture need to change to better use the features of 

a key-value data store. Some of the features we will discuss for all the NoSQL data stores are consistency, 

transactions, query features, structure of the data, and scaling.  

Consistency  

Consistency is applicable only for operations on a single key, since these operations are either a get, put, 

or delete on a single key. Optimistic writes can be performed, but are very expensive to implement, 

because a change in value cannot be determined by the data store.  

In distributed key-value store implementations like Riak, the eventually consistent (p. 50) model of 

consistency is implemented. Since the value may have already been replicated to other nodes, Riak has 

two ways of resolving update conflicts: either the newest write wins and older writes loose, or both (all) 

values are returned allowing the client to resolve the conflict.  

In Riak, these options can be set up during the bucket creation. Buckets are just a way to namespace keys 

so that key collisions can be reduced—for example, all customer keys may reside in the customer bucket. 

When creating a bucket, default values for consistency can be provided, for example that a write is 

considered good only when the data is consistent across all the nodes where the data is stored.  

Bucket bucket = connection  

.createBucket(bucketName)  

.withRetrier(attempts(3))  

.allowSiblings(siblingsAllowed)  

.nVal(numberOfReplicasOfTheData)  

.w(numberOfNodesToRespondToWrite)  

.r(numberOfNodesToRespondToRead)  

.execute();  

If we need data in every node to be consistent, we can increase the numberOfNodesToRespondToWrite 

set by w to be the same as nVal. Of course doing that will decrease the write performance of the cluster. 

To improve on write or read conflicts, we can change the allowSiblings flag during bucket creation: If it is 
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set to false, we let the last write to win and not create siblings.  

Transactions  

Different products of the key-value store kind have different specifications of transactions. Generally 

speaking, there are no guarantees on the writes. Many data stores do implement transactions in different 

ways. Riak uses the concept of quorum (“Quorums,” p. 57) implemented by using the W value  

—replication factor—during the write API call.  

Assume we have a Riak cluster with a replication factor of 5 and we supply the W value of 3. When 

writing, the write is reported as successful only when it is written and reported as a success on at least 

three of the nodes. This allows Riak to have write tolerance; in our example, with N equal to 5 and with a 

W value of 3, the cluster can tolerate N - W = 2 nodes being down for write operations, though we would 

still have lost some data on those nodes for read.  

Query Features  

All key-value stores can query by the key—and that’s about it. If you have requirements to query by using 

some attribute of the value column, it’s not possible to use the database: Your application needs to read 

the value to figure out if the attribute meets the conditions.  

Query by key also has an interesting side effect. What if we don’t know the key, especially during ad-hoc 

querying during debugging? Most of the data stores will not give you a list of all the primary keys; even if 

they did, retrieving lists of keys and then querying for the value would be very cumbersome. Some 

key-value databases get around this by providing the ability to search inside the value, such as Riak 

Search that allows you to query the data just like you would query it using Lucene indexes.  

While using key-value stores, lots of thought has to be given to the design of the key. Can the key be 

generated using some algorithm? Can the key be provided by the user (user ID, email, etc.)? Or derived 

from timestamps or other data that can be derived outside of the database?  

These query characteristics make key-value stores likely candidates for storing session data (with the 

session ID as the key), shopping cart data, user profiles, and so on. The expiry_secs property can be used 

to expire keys after a certain time interval, especially for session/shopping cart objects.  

Bucket bucket = getBucket(bucketName);  

IRiakObject riakObject = bucket.store(key, value).execute();  

When writing to the Riak bucket using the store API, the object is stored for the key provided.  

Similarly, we can get the value stored for the key using the fetch API.  
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Bucket bucket = getBucket(bucketName);  

IRiakObject riakObject = bucket.fetch(key).execute(); byte[] bytes = riakObject.getValue();  

String value = new String(bytes);  

Riak provides an HTTP-based interface, so that all operations can be performed from the web browser or 

on the command line using curl. Let’s save this data to Riak:  

{  

"lastVisit":1324669989288, "user":{  

"customerId":"91cfdf5bcb7c", "name":"buyer",  

"countryCode":"US", "tzOffset":0  

}  

}  

Use the curl command to POST the data, storing the data in the session bucket with the key of  

a7e618d9db25 (we have to provide this key):  

curl -v -X POST -d '  

{ "lastVisit":1324669989288,  

"user":{"customerId":"91cfdf5bcb7c", "name":"buyer",  

"countryCode":"US", "tzOffset":0}  

}'  

-H "Content-Type: application/json" http://localhost:8098/buckets/session/keys/a7e618d9db25  

The data for the key a7e618d9db25 can be fetched by using the curl command: curl -i 

http://localhost:8098/buckets/session/keys/a7e618d9db25  

Structure of Data  

Key-value databases don’t care what is stored in the value part of the key-value pair. The value can be a 

blob, text, JSON, XML, and so on. In Riak, we can use the Content-Type in the POST request to specify 

the data type.  

Scaling  

Many key-value stores scale by using sharding (“Sharding,” p. 38). With sharding, the value of the key 

determines on which node the key is stored. Let’s assume we are sharding by the first character of the 
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key; if the key is f4b19d79587d, which starts with an f, it will be sent to different node than the key 

ad9c7a396542. This kind of sharding setup can increase performance as more nodes are added to the 

cluster.  

Sharding also introduces some problems. If the node used to store f goes down, the data stored on that 

node becomes unavailable, nor can new data be written with keys that start with f.  

Data stores such as Riak allow you to control the aspects of the CAP Theorem (“The CAP Theorem,” p. 

53): N (number of nodes to store the key-value replicas), R (number of nodes that have to have the data 

being fetched before the read is considered successful), and W (the number of nodes the write has to be 

written to before it is considered successful).  

Let’s assume we have a 5-node Riak cluster. Setting N to 3 means that all data is replicated to at least 

three nodes, setting R to 2 means any two nodes must reply to a GET request for it to be considered 

successful and setting W to 2 ensures that the PUT request is written to two nodes before the write is 

considered successful.  

These settings allow us to fine-tune node failures for read or write operations. Based on our need, we can 

change these values for better read availability or write availability. Generally speaking choose a W value 

to match your consistency needs; these values can be set as defaults during bucket creation.  

Suitable Use Cases  

Let’s discuss some of the problems where key-value stores are a good fit.  

Storing Session Information  

Generally, every web session is unique and is assigned a unique sessionid value. Applications that store 

the sessionid on disk or in an RDBMS will greatly benefit from moving to a key-value store, since 

everything about the session can be stored by a single PUT request or retrieved using GET. This 

single-request operation makes it very fast, as everything about the session is stored in a single object. 

Solutions such as Memcached are used by many web applications, and Riak can be used when availability 

is important.  

User Profiles, Preferences  

Almost every user has a unique userId, username, or some other attribute, as well as preferences such as 

language, color, timezone, which products the user has access to, and so on. This can all be put into an 

object, so getting preferences of a user takes a single GET operation. Similarly, product profiles can be 

stored.  

Shopping Cart Data  
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E-commerce websites have shopping carts tied to the user. As we want the shopping carts to be available 

all the time, across browsers, machines, and sessions, all the shopping information can be put into the 

value where the key is the userid. A Riak cluster would be best suited for these kinds of applications.  

When Not to Use  

There are problem spaces where key-value stores are not the best solution.  

Relationships among Data  

If you need to have relationships between different sets of data, or correlate the data between different sets 

of keys, key-value stores are not the best solution to use, even though some key-value stores provide 

link-walking features. 

Multioperation Transactions  

If you’re saving multiple keys and there is a failure to save any one of them, and you want to revert or roll 

back the rest of the operations, key-value stores are not the best solution to be used.  

Query by Data  

If you need to search the keys based on something found in the value part of the key-value pairs, then 

key-value stores are not going to perform well for you. There is no way to inspect the value on the 

database side, with the exception of some products like Riak Search or indexing engines like Lucene 

[Lucene] or Solr [Solr].  

Operations by Sets  

Since operations are limited to one key at a time, there is no way to operate upon multiple keys at the 

same time. If you need to operate upon multiple keys, you have to handle this from the client side. 

 

17 
 


	Figure 1.1. A map function reads records from the database and emits key-value pairs.  
	Figure 1.2. A reduce function takes several key-value pairs with the same key and aggregates them into one.  
	Figure 1.3. Partitioning allows reduce functions to run in parallel on different keys.  
	Figure 1.4. Combining reduces data before sending it across the network.  
	Figure 1.5. This reduce function, which counts how many unique customers order a particular tea, is not combinable. 
	Figure 1.6. When calculating averages, the sum and count can be combined in the reduce calculation, but the average must be calculated from the combined sum and count.  
	Figure 1.7. When making a count, each map emits 1, which can be summed to get a total.  
	Figure 1.8. A calculation broken down into two map-reduce steps, which will be expanded in the next three figures 
	Figure 1.9. Creating records for monthly sales of a product  
	Figure 1.10. The second stage mapper creates base records for year-on-year comparisons. 
	Figure 1.11. The reduction step is a merge of incomplete records.  

