
Module 3

 Module-3
Chapter 1 - Map Reduce

The rise of aggregate oriented databases is in large part due to the growth of clusters. Running on a cluster

means you have to make your tradeoffs in data storage differently than when running on a single machine.

Clusters don’t just change the rules for data storage they also change the rules for computation. If you

store lots of data on a cluster, processing that data efficiently means you have to think differently about

how you organize your processing.

With a centralized database, there are generally two ways you can run the processing logic against it:

either on the database server itself or on a client machine. Running it on a client machine gives you more

flexibility in choosing a programming environment, which usually makes for programs that are easier to

create or extend. If you need to hit a lot of data, then it makes sense to do the processing on the server,

paying the price in programming convenience and increasing the load on the database server.

When you have a cluster, there is good news immediately you have lots of machines to spread the

computation over. However, you also still need to try to reduce the amount of data that needs to be

transferred across the network by doing as much processing as you can on the same node as the data it

needs.

The map-reduce pattern is a way to organize processing in such a way as to take advantage of multiple

machines on a cluster while keeping as much processing and the data it needs together on the same

machine. It first gained prominence with Google’s Map Reduce framework .A widely used open-source

implementation is part of the Hadoop project, although several databases include their own

implementations. As with most patterns, there are differences in detail between these implementations, so

we’ll concentrate on the general concept. The name “map-reduce” reveals its inspiration from the map

and reduce operations on collections in functional programming languages.

1.1 Basic Map-Reduce
To explain the basic idea, we’ll start from an example we’ve already flogged to death that of customers

and orders. Let’s assume we have chosen orders as our aggregate, with each order having line items. Each

line item has a product ID, quantity, and the price charged. This aggregate makes a lot of sense as usually

people want to see the whole order in one access. We have lots of orders, so we’ve sharded the dataset

over many machines.

However, sales analysis people want to see a product and its total revenue for the last seven days.

This is exactly the kind of situation that calls for map-reduce. The first stage in a map-reduce job is the

map. A map is a function whose input is a single aggregate and whose output is a bunch of key- value

1

Module 3

pairs. In this case, the input would be an order. The output would be key-value pairs corresponding to the

line items. Each one would have the product ID as the key and an embedded map with the quantity and

price as the values (see Figure 1.1).

Figure 1.1. A map function reads records from the database and emits key-value pairs.

Each application of the map function is independent of all the others. This allows them to be safely

parallelizable, so that a map-reduce framework can create efficient map tasks on each node and freely

allocate each order to a map task. This yields a great deal of parallelism and locality of data access. For

this example, we are just selecting a value out of the record, but there’s no reason why we can’t carry out

some arbitrarily complex function as part of the map providing it only depends on one aggregate’s worth

of data.

A map operation only operates on a single record; the reduce function takes multiple map outputs with the

same key and combines their values.

So, a map function might yield 1000 line items from orders for “Database Refactoring”; the reduce

function would reduce down to one, with the totals for the quantity and revenue. While the map function

is limited to working only on data from a single aggregate, the reduce function can use all values emitted

for a single key (see Figure 1.2).

The map-reduce framework arranges for map tasks to be run on the correct nodes to process all the

documents and for data to be moved to the reduce function. To make it easier to write the reduce function,

the framework collects all the values for a single pair and calls the reduce function once with the key and

the collection of all the values for that key. So to run a map-reduce job, you just need to write these two

functions.

2

Module 3

Figure 1.2. A reduce function takes several key-value pairs with the same key and aggregates them into one.

1.2 Partitioning and Combining
In the simplest form, we think of a map-reduce job as having a single reduce function. The outputs from

all the map tasks running on the various nodes are concatenated together and sent into the reduce. While

this will work, there are things we can do to increase the parallelism and to reduce the data transfer(see

figure 1.3)

The first thing we can do is increase parallelism by partitioning the output of the mappers. Each reduce

function operates on the results of a single key. This is a limitation it means you can’t do anything in the

reduce that operates across keys but it’s also a benefit in that it allows you to run multiple reducers in

parallel. To take advantage of this, the results of the mapper are divided up based the key on each

processing node. Typically, multiple keys are grouped together into partitions. The framework then takes

the data from all the nodes for one partition, combines it into a single group for that partition, and sends it

off to a reducer. Multiple reducers can then operate on the partitions in parallel, with the final results

merged together. (This step is also called “shuffling,” and the partitions are sometimes referred to as

“buckets” or “regions.”)

3

Module 3

Figure 1.3. Partitioning allows reduce functions to run in parallel on different keys.

The next problem we can deal with is the amount of data being moved from node to node between the

map and reduce stages. Much of this data is repetitive, consisting of multiple key-value pairs for the same

key. A combiner function cuts this data down by combining all the data for the same key into a single

value (see Figure 1.4). A combiner function is, in essence, a reducer function—indeed, in many cases the

same function can be used for combining as the final reduction. The reduce function needs a special shape

for this to work: Its output must match its input. We call such a function a combinable reducer.

Figure 1.4. Combining reduces data before sending it across the network.

Not all reduce functions are combinable. Consider a function that counts the number of unique customers

4

Module 3

for a particular product. The map function for such an operation would need to emit the

product and the customer. The reducer can then combine them and count how many times each customer

appears for a particular product, emitting the product and the count (see Figure 1.5). But this reducer’s

output is different from its input, so it can’t be used as a combiner. You can still run a combining function

here: one that just eliminates duplicate product-customer pairs, but it will be different from the final

reducer.

Figure 1.5. This reduce function, which counts how many unique customers order a particular tea, is not combinable.

When you have combining reducers, the map-reduce framework can safely run not only in parallel (to

reduce different partitions), but also in series to reduce the same partition at different times and places. In

addition to allowing combining to occur on a node before data transmission, you can also start combining

before mappers have finished. This provides a good bit of extra flexibility to the map-reduce processing.

Some map-reduce frameworks require all reducers to be combining reducers, which maximizes this

flexibility. If you need to do a noncombining reducer with one of these frameworks, you’ll need to

separate the processing into pipelined map-reduce steps.

1.3 Composing Map-Reduce Calculations
The map-reduce approach is a way of thinking about concurrent processing that trades off flexibility in

how you structure your computation for a relatively straightforward model for parallelizing the

computation over a cluster. Since it’s a tradeoff, there are constraints on what you can do in your

calculations. Within a map task, you can only operate on a single aggregate. Within a reduce task, you can

only operate on a single key. This means you have to think differently about structuring your programs so

they work well within these constraints.

One simple limitation is that you have to structure your calculations around operations that fit in well with

the notion of a reduce operation. A good example of this is calculating averages. Let’s consider the kind

of orders we’ve been looking at so far; suppose we want to know the average ordered quantity of each

5

Module 3

product. An important property of averages is that they are not comparable.

that is, if I take two groups of orders, I can’t combine their averages alone. Instead, I need to take total

amount and the count of orders from each group, combine those, and then calculate the average from the

combined sum and count (see Figure 1.6).

Figure 1.6. When calculating averages, the sum and count can be combined in the reduce calculation, but the average

must be calculated from the combined sum and count.

This notion of looking for calculations that reduce neatly also affects how we do counts. To make a count,

the mapping function will emit count fields with a value of 1, which can be summed to get a total count

(see Figure 1.7).

Figure 1.7. When making a count, each map emits 1, which can be summed to get a total.

1.4 A Two Stage Map-Reduce Example

6

Module 3

As map-reduce calculations get more complex, it’s useful to break them down into stages using a

pipes-and-filters approach, with the output of one stage serving as input to the next, rather like the

pipelines in UNIX.

Consider an example where we want to compare the sales of products for each month in 2011 to the prior

year. To do this, we’ll break the calculations down into two stages. The first stage will produce records

showing the aggregate figures for a single product in a single month of the year. The second stage then

uses these as inputs and produces the result for a single product by comparing one month’s results with

the same month in the prior year (see Figure 1.8).

Figure 1.8. A calculation broken down into two map-reduce steps, which will be expanded in the next three figures

A first stage (Figure 1.9) would read the original order records and output a series of key-value pairs for

the sales of each product per month.

7

Module 3

Figure 1.9. Creating records for monthly sales of a product

This stage is similar to the map-reduce examples we’ve seen so far. The only new feature is using a

composite key so that we can reduce records based on the values of multiple fields.

The second-stage mappers (Figure 1.10) process this output depending on the year. A 2011 record

populates the current year quantity while a 2010 record populates a prior year quantity. Records for earlier

years (such as 2009) don’t result in any mapping output being emitted.

Figure 1.10. The second stage mapper creates base records for year-on-year comparisons.

The reduce in this case (Figure 1.11) is a merge of records, where combining the values by summing

allows two different year outputs to be reduced to a single value (with a calculation based on the reduced

values thrown in for good measure).

8

Module 3

Figure 1.11. The reduction step is a merge of incomplete records.

Decomposing this report into multiple map-reduce steps makes it easier to write. Like many

transformation examples, once you’ve found a transformation framework that makes it easy to compose

steps, it’s usually easier to compose many small steps together than try to cram heaps of logic into a single

step.

Another advantage is that the intermediate output may be useful for different outputs too, so you can get

some reuse. This reuse is important as it saves time both in programming and in execution. The

intermediate records can be saved in the data store, forming a materialized view (“Materialized Views,” p.

30). Early stages of map-reduce operations are particularly valuable to save since they often represent the

heaviest amount of data access, so building them once as a basis for many downstream uses saves a lot of

work. As with any reuse activity, however, it’s important to build them out of experience with real

queries, as speculative reuse rarely fulfills its promise. So it’s important to look at the forms of various

queries as they are built and factor out the common parts of the calculations into materialized views.

Map-reduce is a pattern that can be implemented in any programming language. However, the constraints

of the style make it a good fit for languages specifically designed for map-reduce computations. Apache

Pig [Pig], an offshoot of the Hadoop [Hadoop] project, is a language specifically built to make it easy to

write map-reduce programs. It certainly makes it much easier to work with Hadoop than the underlying

Java libraries. In a similar vein, if you want to specify map- reduce programs using an SQL-like syntax,

there is hive [Hive], another Hadoop offshoot.

The map-reduce pattern is important to know about even outside of the context of NoSQL databases.

Google’s original map-reduce system operated on files stored on a distributed file system an approach

that’s used by the open-source Hadoop project. While it takes some thought to get used to the constraints

9

Module 3

of structuring computations in map-reduce steps, the result is a calculation that is inherently well-suited to

running on a cluster. When dealing with high volumes of data, you need to take a cluster-oriented

approach. Aggregate-oriented databases fit well with this style of calculation. We think that in the next

few years many more organizations will be processing the volumes of data that demand a cluster-oriented

solution—and the map-reduce pattern will see more and more use.

1.5 Incremental Map-Reduce
The examples we’ve discussed so far are complete map-reduce computations, where we start with raw

inputs and create a final output. Many map-reduce computations take a while to perform, even with

clustered hardware, and new data keeps coming in which means we need to rerun the computation to keep

the output up to date. Starting from scratch each time can take too long, so often it’s useful to structure a

map-reduce computation to allow incremental updates, so that only the minimum computation needs to be

done.

The map stages of a map-reduce are easy to handle incrementally only if the input data changes does the

mapper need to be rerun. Since maps are isolated from each other, incremental updates are

straightforward.

The more complex case is the reduce step, since it pulls together the outputs from many maps and any

change in the map outputs could trigger a new reduction. This recomputation can be lessened depending

on how parallel the reduce step is. If we are partitioning the data for reduction, then any partition that’s

unchanged does not need to be re-reduced. Similarly, if there’s a combiner step, it doesn’t need to be rerun

if its source data hasn’t changed.

If our reducer is combinable, there’s some more opportunities for computation avoidance. If the changes

are additive that is, if we are only adding new records but are not changing or deleting any old records

then we can just run the reduce with the existing result and the new additions. If there are destructive

changes, that is updates and deletes, then we can avoid some recomputation by breaking up the reduce

operation into steps and only recalculating those steps whose inputs have changed essentially, using a

Dependency Network [Fowler DSL] to organize the computation.

The map-reduce framework controls much of this, so you have to understand how a specific framework

supports incremental operation.

Chapter 2 - Key-Value Databases
A key-value store is a simple hash table, primarily used when all access to the database is via primary key.

Think of a table in a traditional RDBMS with two columns, such as ID and NAME, the ID column being

the key and NAME column storing the value. In an RDBMS, the NAME column is restricted to storing

10

Module 3

data of type String. The application can provide an ID and VALUE and persist the pair; if the ID already

exists the current value is overwritten, otherwise a new entry is created. Let’s look at how terminology

compares in Oracle and Riak.

2.1 What Is a Key-Value Store
Key-value stores are the simplest NoSQL data stores to use from an API perspective. The client can either

get the value for the key, put a value for a key, or delete a key from the data store. The value is a blob that

the data store just stores, without caring or knowing what’s inside; it’s the responsibility of the application

to understand what was stored. Since key-value stores always use primary-key access, they generally have

great performance and can be easily scaled.

Some of the popular key-value databases are Riak [Riak], Redis (often referred to as Data Structure

server) [Redis], Memcached DB and its flavors [Memcached], Berkeley DB [Berkeley DB], HamsterDB

(especially suited for embedded use) [HamsterDB], Amazon DynamoDB [Amazon’s Dynamo] (not

open-source), and Project Voldemort [Project Voldemort] (an open-source implementation of Amazon

DynamoDB).

In some key-value stores, such as Redis, the aggregate being stored does not have to be a domain

object—it could be any data structure. Redis supports storing lists, sets, hashes and can do range, diff,

union, and intersection operations. These features allow Redis to be used in more different ways than a

standard key-value store.

There are many more key-value databases and many new ones are being worked on at this time. For the

sake of keeping discussions in this book easier we will focus mostly on Riak. Riak lets us store keys into

buckets, which are just a way to segment the keys—think of buckets as flat namespaces for the keys.

If we wanted to store user session data, shopping cart information, and user preferences in Riak, we could

just store all of them in the same bucket with a single key and single value for all of these objects. In this

scenario, we would have a single object that stores all the data and is put into a single bucket (Figure 2.1).

11

Module 3

Figure 2.1. Storing all the data in a single bucket

The downside of storing all the different objects (aggregates) in the single bucket would be that one

bucket would store different types of aggregates, increasing the chance of key conflicts. An alternate

approach would be to append the name of the object to the key, such as 288790b8a421_userProfile, so

that we can get to individual objects as they are needed.

Figure 2.2. Change the key design to segment the data in a single bucket.

We could also create buckets which store specific data. In Riak, they are known as domain buckets

allowing the serialization and deserialization to be handled by the client driver.

Bucket bucket = client.fetchBucket(bucketName).execute();

DomainBucket<UserProfile> profileBucket = DomainBucket.builder(bucket, UserProfile.class).build();

Using domain buckets or different buckets for different objects (such as UserProfile and ShoppingCart)

segments the data across different buckets allowing you to read only the object you need without having

to change key design.

Key-value stores such as Red is also support storing random data structures, which can be sets, hashes,

strings, and so on. This feature can be used to store lists of things, like states or address Types, or an array

12

Module 3

of user’s visits.

2.1.1 Key-Value Store Features
While using any NoSQL data stores, there is an inevitable need to understand how the features compare

to the standard RDBMS data stores that we are so used to. The primary reason is to understand what

features are missing and how does the application architecture need to change to better use the features of

a key-value data store. Some of the features we will discuss for all the NoSQL data stores are consistency,

transactions, query features, structure of the data, and scaling.

Consistency

Consistency is applicable only for operations on a single key, since these operations are either a get, put,

or delete on a single key. Optimistic writes can be performed, but are very expensive to implement,

because a change in value cannot be determined by the data store.

In distributed key-value store implementations like Riak, the eventually consistent (p. 50) model of

consistency is implemented. Since the value may have already been replicated to other nodes, Riak has

two ways of resolving update conflicts: either the newest write wins and older writes loose, or both (all)

values are returned allowing the client to resolve the conflict.

In Riak, these options can be set up during the bucket creation. Buckets are just a way to namespace keys

so that key collisions can be reduced—for example, all customer keys may reside in the customer bucket.

When creating a bucket, default values for consistency can be provided, for example that a write is

considered good only when the data is consistent across all the nodes where the data is stored.

Bucket bucket = connection

.createBucket(bucketName)

.withRetrier(attempts(3))

.allowSiblings(siblingsAllowed)

.nVal(numberOfReplicasOfTheData)

.w(numberOfNodesToRespondToWrite)

.r(numberOfNodesToRespondToRead)

.execute();

If we need data in every node to be consistent, we can increase the numberOfNodesToRespondToWrite

set by w to be the same as nVal. Of course doing that will decrease the write performance of the cluster.

To improve on write or read conflicts, we can change the allowSiblings flag during bucket creation: If it is

13

Module 3

set to false, we let the last write to win and not create siblings.

Transactions

Different products of the key-value store kind have different specifications of transactions. Generally

speaking, there are no guarantees on the writes. Many data stores do implement transactions in different

ways. Riak uses the concept of quorum (“Quorums,” p. 57) implemented by using the W value

—replication factor—during the write API call.

Assume we have a Riak cluster with a replication factor of 5 and we supply the W value of 3. When

writing, the write is reported as successful only when it is written and reported as a success on at least

three of the nodes. This allows Riak to have write tolerance; in our example, with N equal to 5 and with a

W value of 3, the cluster can tolerate N - W = 2 nodes being down for write operations, though we would

still have lost some data on those nodes for read.

Query Features

All key-value stores can query by the key—and that’s about it. If you have requirements to query by using

some attribute of the value column, it’s not possible to use the database: Your application needs to read

the value to figure out if the attribute meets the conditions.

Query by key also has an interesting side effect. What if we don’t know the key, especially during ad-hoc

querying during debugging? Most of the data stores will not give you a list of all the primary keys; even if

they did, retrieving lists of keys and then querying for the value would be very cumbersome. Some

key-value databases get around this by providing the ability to search inside the value, such as Riak

Search that allows you to query the data just like you would query it using Lucene indexes.

While using key-value stores, lots of thought has to be given to the design of the key. Can the key be

generated using some algorithm? Can the key be provided by the user (user ID, email, etc.)? Or derived

from timestamps or other data that can be derived outside of the database?

These query characteristics make key-value stores likely candidates for storing session data (with the

session ID as the key), shopping cart data, user profiles, and so on. The expiry_secs property can be used

to expire keys after a certain time interval, especially for session/shopping cart objects.

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject = bucket.store(key, value).execute();

When writing to the Riak bucket using the store API, the object is stored for the key provided.

Similarly, we can get the value stored for the key using the fetch API.

14

Module 3

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject = bucket.fetch(key).execute(); byte[] bytes = riakObject.getValue();

String value = new String(bytes);

Riak provides an HTTP-based interface, so that all operations can be performed from the web browser or

on the command line using curl. Let’s save this data to Riak:

{

"lastVisit":1324669989288, "user":{

"customerId":"91cfdf5bcb7c", "name":"buyer",

"countryCode":"US", "tzOffset":0

}

}

Use the curl command to POST the data, storing the data in the session bucket with the key of

a7e618d9db25 (we have to provide this key):

curl -v -X POST -d '

{ "lastVisit":1324669989288,

"user":{"customerId":"91cfdf5bcb7c", "name":"buyer",

"countryCode":"US", "tzOffset":0}

}'

-H "Content-Type: application/json" http://localhost:8098/buckets/session/keys/a7e618d9db25

The data for the key a7e618d9db25 can be fetched by using the curl command: curl -i

http://localhost:8098/buckets/session/keys/a7e618d9db25

Structure of Data

Key-value databases don’t care what is stored in the value part of the key-value pair. The value can be a

blob, text, JSON, XML, and so on. In Riak, we can use the Content-Type in the POST request to specify

the data type.

Scaling

Many key-value stores scale by using sharding (“Sharding,” p. 38). With sharding, the value of the key

determines on which node the key is stored. Let’s assume we are sharding by the first character of the

15

Module 3

key; if the key is f4b19d79587d, which starts with an f, it will be sent to different node than the key

ad9c7a396542. This kind of sharding setup can increase performance as more nodes are added to the

cluster.

Sharding also introduces some problems. If the node used to store f goes down, the data stored on that

node becomes unavailable, nor can new data be written with keys that start with f.

Data stores such as Riak allow you to control the aspects of the CAP Theorem (“The CAP Theorem,” p.

53): N (number of nodes to store the key-value replicas), R (number of nodes that have to have the data

being fetched before the read is considered successful), and W (the number of nodes the write has to be

written to before it is considered successful).

Let’s assume we have a 5-node Riak cluster. Setting N to 3 means that all data is replicated to at least

three nodes, setting R to 2 means any two nodes must reply to a GET request for it to be considered

successful and setting W to 2 ensures that the PUT request is written to two nodes before the write is

considered successful.

These settings allow us to fine-tune node failures for read or write operations. Based on our need, we can

change these values for better read availability or write availability. Generally speaking choose a W value

to match your consistency needs; these values can be set as defaults during bucket creation.

Suitable Use Cases

Let’s discuss some of the problems where key-value stores are a good fit.

Storing Session Information

Generally, every web session is unique and is assigned a unique sessionid value. Applications that store

the sessionid on disk or in an RDBMS will greatly benefit from moving to a key-value store, since

everything about the session can be stored by a single PUT request or retrieved using GET. This

single-request operation makes it very fast, as everything about the session is stored in a single object.

Solutions such as Memcached are used by many web applications, and Riak can be used when availability

is important.

User Profiles, Preferences

Almost every user has a unique userId, username, or some other attribute, as well as preferences such as

language, color, timezone, which products the user has access to, and so on. This can all be put into an

object, so getting preferences of a user takes a single GET operation. Similarly, product profiles can be

stored.

Shopping Cart Data

16

Module 3

E-commerce websites have shopping carts tied to the user. As we want the shopping carts to be available

all the time, across browsers, machines, and sessions, all the shopping information can be put into the

value where the key is the userid. A Riak cluster would be best suited for these kinds of applications.

When Not to Use

There are problem spaces where key-value stores are not the best solution.

Relationships among Data

If you need to have relationships between different sets of data, or correlate the data between different sets

of keys, key-value stores are not the best solution to use, even though some key-value stores provide

link-walking features.

Multioperation Transactions

If you’re saving multiple keys and there is a failure to save any one of them, and you want to revert or roll

back the rest of the operations, key-value stores are not the best solution to be used.

Query by Data

If you need to search the keys based on something found in the value part of the key-value pairs, then

key-value stores are not going to perform well for you. There is no way to inspect the value on the

database side, with the exception of some products like Riak Search or indexing engines like Lucene

[Lucene] or Solr [Solr].

Operations by Sets

Since operations are limited to one key at a time, there is no way to operate upon multiple keys at the

same time. If you need to operate upon multiple keys, you have to handle this from the client side.

17

	Figure 1.1. A map function reads records from the database and emits key-value pairs.
	Figure 1.2. A reduce function takes several key-value pairs with the same key and aggregates them into one.
	Figure 1.3. Partitioning allows reduce functions to run in parallel on different keys.
	Figure 1.4. Combining reduces data before sending it across the network.
	Figure 1.5. This reduce function, which counts how many unique customers order a particular tea, is not combinable.
	Figure 1.6. When calculating averages, the sum and count can be combined in the reduce calculation, but the average must be calculated from the combined sum and count.
	Figure 1.7. When making a count, each map emits 1, which can be summed to get a total.
	Figure 1.8. A calculation broken down into two map-reduce steps, which will be expanded in the next three figures
	Figure 1.9. Creating records for monthly sales of a product
	Figure 1.10. The second stage mapper creates base records for year-on-year comparisons.
	Figure 1.11. The reduction step is a merge of incomplete records.

