
 UNIT IV

Testing Conventional Applications: Software Testing Fundamentals, Internal and External
Views of Testing, White-Box Testing, Basis Path Testing, Control Structure Testing, Black–Box
Testing.
Software Testing Strategies: A Strategic Approach to Software Testing, Strategic Issues, Test
Strategies for Conventional Software, Validation Testing, System Testing, The Art of
Debugging.

Testing Conventional Applications:

SOFTWARE TESTING FUNDAMENTALS

The goal of testing is to find errors, and a good test is one that has a high probability of finding an error. The

product should be testable. “Software testability is simply how easily a computer program can be tested.”

Testability exhibits following characteristics:-

a)​ Operability:- If a system is designed and implemented with quality in mind, relatively few bugs will block

the execution of tests.

b)​ Observability:- “What you see is what you test.” Inputs provided as part of testing produce distinct outputs.

c)​ Controllability:- “The better we can control the software, the more the testing can be automated and

optimized.” All possible outputs can be generated through some combination of input.

d)​ Decomposability:- By controlling the scope of testing, we can more quickly isolate problems and perform

smarter retesting.

e)​ Simplicity:- “The less there is to test, the more quickly we can test it.” The program should exhibit

functional simplicity; structural simplicity, and code simplicity.

f)​ Stability:- “The fewer the changes, the fewer the disruptions to testing.”

g)​ Understandability:- “The more information we have, the smarter we will test.”

Test Characteristics:- The following attributes of a “good” test:

i.​ A good test has a high probability of finding an error.

ii.​ A good test is not redundant. There is no point in conducting a test that has the same purpose as another test.

iii.​ A good test should be “best of breed”.

iv.​ A good test should be neither too simple nor too complex.

INTERNAL AND EXTERNAL VIEWS OF TESTING

Any software can be tested in one of two ways:

(1)​ Knowing the specified function that a product has been designed to perform, tests can be

conducted that demonstrate each function is fully operational while at the same time searching for errors

in each function.

(2)​ Knowing the internal workings of a product, that is, internal operations are performed

according to specifications and all internal components have been adequately exercised.

The first test approach takes an external view and is called black-box testing. A black-box test examines

some fundamental aspect of a system with little regard for the internal logical structure of the software.

The second requires an internal view and is termed white-box testing. White-box testing of software is

predicated on close examination of procedural detail. White-box testing would lead to “100 percent

correct programs.” All we need do is define all logical paths, develop test cases to exercise them, and

evaluate results.

WHITE-BOX TESTING

White-box testing, sometimes called glass-box testing. Our goal is to ensure that all statements and
conditions have been executed at least once.

Using white-box testing methods, the software engineer can derive test cases that:

1.​ Guarantee that all independent paths within a module have been exercised at least once.
2.​ Exercise all logical decisions on their true and false sides.
3.​ Execute all loops at their boundaries and within their operational bounds.
4.​ Exercise internal data structures to ensure their validity.

BASIS PATH TESTING: Basis path testing is a white-box testing technique first proposed by Tom
McCabe. Test cases derived to exercise the basis set are guaranteed to execute every statement in the
program at least one time during testing.

■​ Flow Graph Notation: Before the basis path method can be introduced, a simple notation for the
representation of control flow, called a flow graph (or program graph) must be introduced.

Each circle, called a flow graph node, represents one or more procedural statements. The arrows on
the flow graph, called edges or links, represent flow of control. Each node that contains a condition
is called a predicate node and is characterized by two or more edges emanating from it.

Cyclomatic Complexity: Cyclomatic complexity is software metric that provides a quantitative
measure of the logical complexity of a program.

In the context of the basis path testing method, the value computed for Cyclomatic complexity
defines the number of independent paths in the basis set of a program and provides us with an
upper bound for the number of tests that must be conducted to ensure that all statements have been
executed at least once.

An independent path is any path through the program that introduces at least one new set of
processing statements or a new condition. When stated in terms of a flow graph, an independent
path must move along at least one edge that has not been traversed before the path is defined.

In the above fig the set of independent paths are as follows:

Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11

Path 3: 1-2-3-6-8-9-10-1-11

Path 4: 1-2-3-6-7-9-10-1-11

Note that each new path introduces a new edge.

The path 1-2-3-4-5-10-1-2-3-6-8-9-10-1-11

Is not considered an independent path because it is simply a combination of already specified paths

and does not traverse any new edges.

Paths 1, 2, 3, and 4 constitute a basis set for the above flow graph

Cyclomatic complexity

1.​The number of regions of the flow graph corresponds to the Cyclomatic complexity.

2.​ Cyclomatic complexity, V(G), for a flow graph, G, is defined as V(G) = E -

N + 2 Where E is the number of flow graph edges, N is the number of flow graph

nodes.

3.​ Cyclomatic complexity, V (G), for a flow graph, G, is also defined as V(G) =

P + 1 Where P is the number of predicate nodes contained in the flow graph G.

Referring once more to the above flow graph the Cyclomatic complexity can be computed using

each of the algorithms just noted:

1.​The flow graph has four regions.

2.​V(G) = 11 edges 9 nodes + 2 = 4.

3.​V(G) = 3 predicate nodes + 1 = 4.cyclomatic complexity for above flow graph.

Deriving Test Cases

Using the above PDL let us describe how to derive the

test cases The following steps are used to derive the set of

test cases

1.​Using the design or code as a foundation, draw a corresponding flow graph

2.​Determine the cyclomatic complexity of the resultant flow graph.

V(G) = 6 regions
V(G) = 17 edges -13 nodes + 2 = 6
V(G) = 5 predicate nodes + 1 = 6

3.​Determine a basis set of linearly independent paths.

The value of V(G) provides the number of linearly independent paths through the program control
structure. In the case of procedure average, we expect to specify six paths:

path 1: 1-2-10-11-13
path 2: 1-2-10-12-13
path 3: 1-2-3-10-11-13
path 4: 1-2-3-4-5-8-9-2-. . .
path 5: 1-2-3-4-5-6-8-9-2-. . .
path 6: 1-2-3-4-5-6-7-8-9-2-. . .

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through the remainder of the
control structure is acceptable. It is often worthwhile to identify predicate nodes as an aid in the
derivation of test cases. In this case, nodes 2, 3, 5, 6, and 10 are predicate nodes

4.​Prepare test cases that will force execution of each path in the basis set.

Each test case is executed and compared to expected results. Once all test cases have been
completed, the tester can be sure that all statements in the program have been executed at least
once.

Graph Matrices: To develop a software tool that assists in basis path testing, a data structure,
called a graph matrix, can be quite useful. A graph matrix is a square matrix whose size (i.e., number
of rows and columns) is equal to number of nodes on the flow graph. Each row and column
corresponds to an identified node, and matrix entries correspond to connections (an edge) between

nodes. A simple example of a flow graph and its corresponding graph matrix is shown in below figure.

What is a graph matrix and how do we extend it use for testing? The graph matrix is nothing more

than a tabular representation of a flow graph. By adding a link weight to each matrix entry, the graph

matrix can become a powerful tool for evaluating program control structure during testing

In its simplest form, the link weight is 1 (a connection exists) or 0 (a connection does not exist).
Represented in this form, the graph matrix is called a connection matrix. Referring to above figure
each row with two or more entries represents a predicate node.

Performing the arithmetic shown to the right of the connection matrix provides us with still another
method for determining Cyclomatic complexity.

CONTROL STRUCTURE TESTING: It broadens testing coverage and improve quality of white-box testing

Condition testing is a test case design method that exercises the logical conditions contained in a
program module. A simple condition is a Boolean variable or a relational expression, possibly
preceded with one NOT (¬) operator. A relational expression takes the form

E1 <relational-operator> E2
where E1 and E2 are arithmetic expressions and <relational-operator> is one of the following: <, ≤,
=, ≠ (nonequality), >, or ≥.

A compound condition is composed of two or more simple conditions, Boolean operators, and
parentheses. A condition without relational expressions is referred to as a Boolean expression.

Types of errors in a condition include the following:

•​ Boolean operator error (incorrect/missing/extra Boolean operators), Boolean variable error,
Boolean parenthesis error, Relational operator error and Arithmetic expression error.

The purpose of condition testing is to detect not only errors in the conditions of a program but also
other errors in the program

​​ Data Flow Testing: The data flow testing method selects test paths of a program according to the

locations of definitions and uses of variables in the program.

To illustrate the data flow testing approach, assume that each statement in a program is assigned a
unique statement number and that each function does not modify its parameters or global variables.
For a statement with S as its statement number,

DEF(S) = {X | statement S contains a definition of
X} USE(S) = {X | statement S contains a use of
X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based on the
condition of statement S. The definition of variable X at statement S is said to be live at statement
S' if there exists a path from statement S to statement S' that contains no other definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S'], where S and S' are statement
numbers, X is in DEF(S) and USE(S'), and the definition of X in statement S is live at statement S'.
One simple data flow testing strategy is to require that every DU chain be covered at least once.

We refer to this strategy as the DU testing strategy.

​​ Loop Testing: It is a white-box testing technique that focuses exclusively on the validity of loop

constructs. Four different classes of loops can be defined: simple loops, concatenated loops, nested
loops, and unstructured loops (Figure 17.8)

1.​ Simple loops: The following set of tests can be applied to simple loops, where n is the maximum
number of allowable passes through the loop.

1.​Skip the loop entirely.
2.​Only one pass through the loop.
3.​Two passes through the loop.
4.​m passes through the loop where m < n.
5.​n - 1, n, n + 1 passes through the loop.

2.​ Nested loops: If we were to extend the test approach for simple loops to nested loops, the number of

possible tests would grow geometrically as the level of nesting increases. This would result in an
impractical number of tests. Beizer suggests an approach that will help to reduce the number of tests:

1.​Start at the innermost loop. Set all other loops to minimum values.
2.​ Conduct simple loop tests for the innermost loop while holding the outer loops at their minimum
iteration parameter (e.g., loop counter) values.
3.​ Work outward, conducting tests for the next loop, but keeping all other outer loops at minimum
values and other nested loops to "typical" values.
4.​Continue until all loops have been tested.

3.​ Concatenated loops: Concatenated loops can be tested using the approach defined for simple loops,

if each of the loops is independent of the other. However, if two loops are concatenated and the loop
counter for loop 1 is used as the initial value for loop 2, then the loops are not independent. When the
loops are not independent, the approach applied to nested loops is recommended.

4.​ Unstructured loops: Whenever possible, this class of loops should be redesigned to reflect the use of

the structured programming constructs.

BLACK-BOX TESTING

Black-box testing, also called behavioral testing, focuses on the functional requirements of the
software. Black -box testing enables the software engineer to derive sets of input conditions that
will fully exercise all functional requirements for a program.

Black-box testing attempts to find errors in the following categories: (1) incorrect or missing
functions,

(1)​ interface errors, (3) errors in data structures or external data base access, (4) behavior or
performance errors, and (5) initialization and termination errors.

White-box testing is performed early in the testing process; Black-box testing tends
to be applied during later stages of testing.

GRAPH-BASED TESTING METHODS: Software testing begins by creating a graph of
important objects and their relationships and then devising a series of tests that will cover the graph
so that each object and relationship is exercised and errors are uncovered.

Collection of nodes that represent objects; links that represent the relationships between

objects; node weights that describe the properties of a node (e.g., a specific data value or state

behavior); and link weights that describe some characteristic of a link.

A directed link (represented by an arrow) indicates that a relationship moves in only one direction.
A bidirectional link, also called a symmetric link, implies that the relationship applies in both
directions.
Parallel links are used when a number of different relationships are established between graph
nodes.

Referring to the figure, a menu select on new file generates a document window. The node

weight of document window provides a list of the window attributes that are to be expected when the

window is generated. The link weight indicates that the window must be generated in less than 1.0

second. An undirected link establishes a symmetric relationship between the new file menu select and

document text, and parallel links indicate relationships between document window and document text.

The software engineer then derives test cases by traversing the graph and covering each of the
relationships shown. These test cases are designed in an attempt to find errors in any of the
relationships.

EQUIVALENCE PARTITIONING: It is a black-box testing method that divides the input
domain of a program into classes of data from which test cases can be derived. Test case design for
equivalence partitioning is based on an evaluation of equivalence classes for an input condition.

If a set of objects can be linked by relationships that are symmetric, transitive, and reflexive, an
equivalence class is present. An equivalence class represents a set of valid or invalid states for
input conditions.

Typically, an input condition is a specific numeric value, a range of values, a set of related values,
or a Boolean condition. Equivalence classes may be defined according to the following guidelines:

1.​ If an input condition specifies a range, one valid and two invalid equivalence classes are
defined.

2.​ If an input condition requires a specific value, one valid and two invalid equivalence classes
are defined.

3.​ If an input condition specifies a member of a set, one valid and one invalid equivalence class
are defined.

Test cases are selected so that largest numbers of attributes of an equivalence class are exercised at
once.

BOUNDARY VALUE ANALYSIS: Number of errors tends to occur at the boundaries of the input domain

rather than in the "center”. Boundary value analysis leads to a selection of test cases that exercise

bounding values.

BVA leads to the selection of test cases at the "edges" of the class. Rather than focusing solely on
input conditions, BVA derives test cases from the output domain as well

How do I create BVA test cases?

1.​ If an input condition specifies a range bounded by values a and b, test cases should be designed with

values a and b and just above and just below a and b.
2.​ If an input condition specifies a number of values, test cases should be developed that exercise the

minimum and maximum numbers. Values just above and below minimum and maximum are also
tested.

3.​ Apply guidelines 1 and 2 to output conditions. For example, assume that a temperature vs. pressure
table is required as output from an engineering analysis program. Test cases should be designed to
create an output report that produces the maximum (and minimum) allowable number of table entries.

4.​ If internal program data structures have prescribed boundaries (e.g., an array has a defined limit of
100 entries), be certain to design a test case to exercise the data structure at its boundary.

ORTHOGONAL ARRAY TESTING: The orthogonal array testing method is particularly useful
in finding errors associated with region faults—an error category associated with faulty logic
within a software component.

To illustrate the difference between orthogonal array testing and more conventional “one input
item at a time” approaches, consider a system that has three input items, X, Y, and Z. Each of these
input items has three discrete values associated with it. There are 33 = 27 possible test cases.
Phadke suggests a geometric view of the possible test cases associated with X, Y, and Z illustrated
in Figure. Referring to the figure, one input item at a time may be varied in sequence along each
input axis. This results in relatively limited coverage of the input domain (represented by the
left-hand cube in the figure).

When orthogonal array testing occurs, an L9 orthogonal array of test cases is created. The L9
orthogonal array has a balancing property that is; test cases (represented by black dots in the
figure) are “dispersed uniformly throughout the test domain,”

To illustrate the use of the L9 orthogonal array, consider the send function for a fax application.
Four parameters, P1, P2, P3, and P4, are passed to the send function. Each takes on three discrete
values. For example, P1 takes on values:

P1 = 1, send it now
P1 = 2, send it one hour
later P1 = 3, send it after
midnight
P2, P3, and P4 would also take on values of 1, 2 and 3, signifying other send functions.

If a “one input item at a time” testing strategy were chosen, the following sequence of tests (P1,
P2, P3, P4) would be specified: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), (1, 2, 1,1), (1, 3, 1, 1), (1, 1, 2,
1), (1, 1, 3, 1),
(1, 1, 1, 2), and (1, 1, 1, 3).

Phadke assesses these test cases in the following manner:

SOFTWARE TESTING STRATEGIES

Testing is the process of exercising a program with the specific intent of finding errors prior to
delivery to the end user. Testing shows errors, requirements conformance, performance &
indication of quality.

A STRATEGIC APPROACH TO SOFTWARE TESTING:
Test Strategy incorporates test planning, test case design, test execution and resultant data
collection and execution.

All provide the software developer with a template for testing and all have the following

generic characteristics:

•​ Perform Formal Technical reviews(FTR) to uncover errors during software development
•​ Begin testing at component level and move outward to integration of entire component based

system.
•​ Adopt testing techniques relevant to stages of testing
•​ Testing can be done by software developer and independent testing group
•​ Testing and debugging are different activities. Debugging follows testing

Verification & Validation

Verification refers to the set of activities that ensure that software correctly implements a specific
function.

Validation refers to a different set of activities that ensure that the software that has been built is
traceable to customer requirements.

Boehm [BOE81] states this way:

Verification: "Are we building the product right?"

Validation: "Are we building the right product?"

The definition of V&V encompasses many of the activities that we have referred to as

software quality assurance (SQA). Verification and validation encompasses a wide array of SQA
activities that include formal technical reviews, quality and configuration audits, performance
monitoring, simulation, feasibility study, documentation review, database review, algorithm
analysis, development testing, qualification testing, and installation testing. Although testing plays
an extremely important role in V&V, many other activities are also necessary.
Organizing for Software Testing: The people who have built the software are now asked to test
the software. This seems harmless in itself; after all, who knows the program better than its
developers do? Unfortunately, these same developers have a vested interest in demonstrating that
the program is error free, that it works according to customer requirements.

From a psychological point of view, software analysis and design (along with coding) are
constructive tasks. From the point of view of the builder, testing can be considered to be
(psychologically) destructive.

The software developer is always responsible for testing the individual units (components)
of the program, ensuring that each performs the function for which it was designed. In many cases,
the developer also conducts integration testing—a testing step that leads to the construction (and
test) of the complete program structure. Only after the software architecture is complete does an
independent test group become involved.

The role of an independent test group (ITG) is to remove the inherent problems associated with
letting the builder test the thing that has been built. Independent testing removes the conflict of
interest that may otherwise be present.

However, the software engineer does not turn the program over to ITG and walk way. The
developer and the ITG work closely throughout a software project to ensure that thorough tests
will be conducted. While testing is conducted, the developer must be available to correct errors that
are uncovered.

The ITG is part of the software development project team in the sense that it becomes
involved during the specification activity and stays involved (planning and specifying test
procedures) throughout a large project.

A Software Testing Strategy for Conventional Software Architecture:

The software engineering process may be viewed as the spiral illustrated in Figure18.1. Initially,
system engineering defines the role of software and leads to software requirements analysis, where
the information domain, function, behavior, performance, constraints, and validation criteria for
software are established.

Unit testing begins at the vortex of the spiral and concentrates on each unit (i.e., component) of
the software as implemented in source code. Testing progresses by moving outward along the
spiral to integration testing, where the focus is on design and the construction of the software
architecture. Taking another turn outward on the spiral, we encounter validation testing, where
requirements
established as part of software requirements analysis are validated against the software that has

been constructed. Finally, we arrive at system testing, where the software and other system
elements are tested as a whole.

Unit testing makes heavy use of white-box testing techniques. Black-box test case design
techniques are the most prevalent during integration, although a limited amount of white-box
testing may be used to ensure coverage of major control paths. Black-box testing techniques are
used exclusively during validation. Software, once validated, must be combined with other system
elements (e.g., hardware, people, and databases). System testing verifies that all elements mesh
properly and that overall system function/performance is achieved.

TEST STRATEGIES FOR CONVENTIONAL SOFTWARE

Unit Testing:

This is a figure just to understand unit testing

Unit testing focuses verification effort on the smallest unit of software design—the software
component or module. Using the component-level design description as a guide, important control
paths are tested to uncover errors within the boundary of the module. The unit test is white-box
oriented.

Unit Test Considerations

The tests that occur as part of unit tests are illustrated schematically in Figure 18.4. The module

interface is tested to ensure that information properly flows into and out of the program unit under
test. The local
data structure is examined to ensure that data stored temporarily maintains its integrity during all
steps in an algorithm's execution. Boundary conditions are tested to ensure that the module
operates properly at boundaries established to limit or restrict processing. All independent paths
(basis paths) through the control structure are exercised to ensure that all statements in a module
have been executed at least once. And finally, all error handling paths are tested.

What errors are commonly found during Unit Testing?

(1) Misunderstood or incorrect arithmetic precedence, (2) mixed mode operations, (3) incorrect

initialization, (4) precision inaccuracy, (5) incorrect symbolic representation of an expression.
Comparison and control flow are closely coupled to one another (i.e., change of flow frequently
occurs after a comparison).

Test cases should uncover errors such as

(1) comparison of different data types, (2) incorrect logical operators or precedence,(3) expectation
of equality when precision error makes equality unlikely, (4) incorrect comparison of variables, (5)
improper or nonexistent loop termination, (6) failure to exit when divergent iteration is
encountered, and
(7) improperly modified loop variables.

Unit Test Procedures: After source level code has been developed, reviewed, and verified for
correspondence to component-level design, unit test case design begins

Because a component is not a stand-alone program, driver and/or stub
software must be developed for each unit test. The unit test environment is
illustrated in Figure 18.5. In most applications a driver is nothing more than a "main
program" that accepts test case data, passes such data to the component (to be
tested), and prints relevant results. Stubs serve to replace modules that are
subordinate (called by) the component to be tested. A stub or "dummy subprogram"
uses the subordinate module's interface, may do minimal data manipulation, prints
verification of entry, and returns control to the module undergoing testing. Unit
testing is simplified when a component with high cohesion is designed.

Integration Testing: The objective is to take unit tested components and build a
program structure that has been dictated by design.

Approaches:

​​ "Big bang" approach: All components are combined in advance. Entire program is
tested as a whole.

​​ Incremental integration: The program is constructed and tested in small increments,

where errors are easier to isolate and corrected.

Number of different incremental integration strategies are discussed:
1.​ Top-Down Integration

Modules are integrated by moving downward through the control hierarchy,
beginning with the main control module (main program). Modules subordinate to
the main control module are incorporated into the structure in either a depth-first
or a breadth-first manner.

Referring to figure Depth-first integration would integrate all components on a
major control path of the structure. Selection of a major path and depends on
application-specific characteristics. For example, selecting left hand path,
components M1, M2, M5 would be integrated first. Next, M8 or (if necessary for

proper functioning of M2) M6 would be integrated. Then, central and right-hand
control paths are built.

Breadth-first integration incorporates all components directly subordinate at each

level, moving across the structure horizontally. From the figure, components M2,
M3, and M4 (a replacement for stub S4) would be integrated first. The next control
level, M5, M6, and so on, follows.
Steps for Top-Down Integration:

1.​ The main control module is used as a test driver and stubs are substituted for all
components directly subordinate to the main control module.

2.​ Depending on the integration approach selected (i.e., depth or breadth first),
subordinate stubs are replaced one at a time with actual components.

3.​ Tests are conducted as each component is integrated.
4.​ On completion of each set of tests, another stub is replaced with the real component.
5.​Regression testing may be conducted to ensure that new errors have not

been introduced. The process continues from step 2 until the entire program
structure is built.

What problems are encountered when top-down integration strategy is
chosen?
The most common of these problems occurs when processing at low levels in the
hierarchy is required to adequately test upper levels. Stubs replace low-level
modules at the beginning of top-down testing; therefore, no significant data can flow
upward in the program structure

2.​ Bottom-Up Integration

Bottom-up integration testing, as its name implies, begins construction and testing
with atomic modules (i.e., components at the lowest levels in the program structure).

Steps for Bottom-Up Integration:
1.​ Low-level components are combined into clusters (sometimes-called builds) that

perform a specific software sub function.
2.​ A driver (a control program for testing) is written to coordinate test case input and

output.
3.​ The cluster is tested.
4.​ Drivers are removed and clusters are combined moving upward in the program

structure.

Components are combined to form clusters 1, 2, and 3. Each of the clusters is tested
using a driver (shown as a dashed block). Components in clusters 1 and 2 are
subordinate to Ma. Drivers D1 and D2 are removed and the clusters are interfaced
directly to Ma. Similarly, driver D3 for cluster 3 is removed prior to integration with
module Mb. Both Ma and Mb will ultimately be integrated with component Mc, and
so forth.

Regression Testing: Each time a new module is added as part of integration testing,
the software changes. New data flow paths are established, new I/O may occur, and
new control logic is invoked. Regression testing is the re-execution of some subset
of tests that have already been conducted to ensure that changes have not propagated
unintended side effects.

The regression test suite (the subset of tests to be executed) contains three different
classes of test cases:

•​A representative sample of tests that will exercise all software functions.
•​Additional tests that focus on software functions that are likely to be affected by the

change.
•​Tests that focus on the software components that have been changed.

Smoke Testing: Smoke testing is an integration testing approach that is commonly
used when “shrink- wrapped” software products are being developed. It is designed
as a pacing mechanism for time-critical projects. The smoke testing approach
encompasses the following activities:

1.​ Software components that have been translated into code are integrated into a
“build.”: A build includes all data files, libraries, reusable modules, and engineered
components that are required to implement one or more product functions.

2.​ A series of tests is designed to expose errors that will keep the build from properly
performing its function: The intent should be to uncover “show stopper” errors that
have the highest likelihood of throwing the software project behind schedule.

3.​ The build is integrated with other builds and the entire product (in its current
form) is smoke tested daily: The integration approach may be top down or bottom
up

Smoke testing provides a number of benefits when it is applied on complex,
time-critical software engineering projects:

•​Integration risk is minimized.
•​The quality of the end-product is improved.
•​Progress is easier to assess.

Comments on Integration Testing: The major disadvantage of the top-down
approach is the need for stubs and the attendant testing difficulties that can be
associated with them. The major disadvantage of bottom-up integration is that "the
program as an entity does not exist until the last module is added"

Selection of an integration strategy depends upon software characteristics and,
sometimes, project schedule. In general, a combined approach (sometimes-called
sandwich testing) that uses top-down tests for upper levels of the program structure,
coupled with bottom-up tests for subordinate levels may be the best compromise.

Fi

g: Sandwich Testing What is a critical

module and why should we identify it?

●​ Address several software requirements
●​ Has a high level of control (high in the program structure) structure)
●​ Is complex or error prone
●​ Has definite performance requirements

VALIDATION TESTING

Validation succeeds when software functions in a manner that can be reasonably
expected by the customer.

Validation Test Criteria: Software validation is achieved through a series of
black-box tests that demonstrate conformity with requirements. Both plan and
procedure are designed to ensure that all functional requirements are satisfied, all
behavioral characteristics are achieved, all performance requirements are attained,
documentation is correct and other requirements are met.

After each validation test case has been conducted, one of two possible conditions
exist:

1.​ The function or performance characteristics conform to specification and are

accepted
2.​ A deviation from specification is uncovered and a deficiency list is created.

Configuration Review: An important element of the validation process is a
configuration review. The intent of the review is to ensure that all elements of the
software configuration have been properly developed, are cataloged, and have the
necessary detail to bolster the support phase of the software life cycle. The
configuration review, sometimes called an audit.

Alpha and Beta Testing: A customer conducts the alpha test at the developer’s site.

The beta test is conducted at one or more customer sites by the end-user of the
software. Unlike alpha testing, the developer is generally not present

SYSTEM TESTING

Software is incorporated with other system elements (e.g., hardware, people,
information), and a series of system integration and validation tests are conducted.
These tests fall outside the scope of the software process and are not conducted
solely by software engineers. A classic system-testing problem is "finger-pointing."
This occurs when an error is uncovered, and each system element developer blames
the other for the problem.

Recovery Testing: Recovery testing is a system test that forces the software to
fail in a variety of ways and verifies that recovery is properly performed.

Security Testing: Security testing attempts to verify that protection mechanisms
built into a system. During security testing, the tester plays the role(s) of the
individual who desires to penetrate the system.

Stress Testing: Stress testing executes a system in a manner that demands
resources in abnormal quantity, frequency, or volume. For example, (1) special tests
may be designed that generate ten interrupts per second, when one or two is the
average rate, (2) input data rates may be increased by an order of magnitude to
determine how input functions will respond, (3) test cases that require maximum
memory or other resources are executed, Essentially, the tester attempts to break the
program.

A variation of stress testing is a technique called sensitivity testing. Sensitivity
testing attempts to uncover data combinations within valid input classes that may
cause instability or improper processing

Performance Testing: Performance testing is designed to test the run-time
performance of software within context of an integrated system. Performance testing
occurs throughout all steps in testing process. Performance tests are often coupled
with stress testing and usually require both hardware and software instrumentation.

THE ART OF DEBUGGING

Debugging occurs as a consequence of successful testing. That is, when a test case
uncovers an error,

debugging is the process that results in the removal of the
error.
The Debugging Process: The debugging process begins with the execution of a test
case. Results are assessed and a lack of correspondence between expected and actual
performance is encountered. In many cases, the noncorresponding data are a

symptom of an underlying cause as yet hidden. The debugging process attempts to
match symptom with cause, thereby leading to error correction.

The debugging process will always have one of two outcomes: (1) the cause will be
found and corrected, or (2) the cause will not be found.

Debugging Approaches: In general, three categories for debugging approaches may be

proposed

(2)​brute force, (2) backtracking, and (3) cause elimination.

The brute force category of debugging is probably the most common and least
efficient method for isolating the cause of a software error. We apply brute force
debugging methods when all else fails

Backtracking is a common debugging approach that can be used successfully in
small programs. Beginning at the site where a symptom has been uncovered, the
source code is traced backward (manually) until the site of the cause is found.

The third approach to debugging — cause elimination — is manifested by
induction or deduction and introduces the concept of binary partitioning. Data
related to the error occurrence are organized to isolate potential causes. A "cause
hypothesis" is devised and the aforementioned data are used to prove or disprove the
hypothesis.

Once a bug has been found, it must be corrected. However, as we have already
noted, the correction of a bug can introduce other errors and therefore do more harm
than good.

Van Vleck [VAN89] suggests three simple questions that every software engineer
should ask before making the "correction" that removes the cause of a bug:

●​ Is the cause of the bug reproduced in another part of the program?
●​ What "next bug" might be introduced by the fix I am about to make?
●​ What could we have done to prevent this bug in the first place?

	 UNIT IV
	SOFTWARE TESTING FUNDAMENTALS
	
	
	INTERNAL AND EXTERNAL VIEWS OF TESTING
	WHITE-BOX TESTING
	Cyclomatic complexity
	Deriving Test Cases
	1.​Using the design or code as a foundation, draw a corresponding flow graph
	3.​Determine a basis set of linearly independent paths.
	4.​Prepare test cases that will force execution of each path in the basis set.
	E1 <relational-operator> E2

	
	BLACK-BOX TESTING
	White-box testing is performed early in the testing process; Black-box testing tends to be applied during later stages of testing.

	SOFTWARE TESTING STRATEGIES
	A STRATEGIC APPROACH TO SOFTWARE TESTING:
	A Software Testing Strategy for Conventional Software Architecture:
	Unit Test Considerations
	What errors are commonly found during Unit Testing?
	Test cases should uncover errors such as
	Number of different incremental integration strategies are discussed:

	Steps for Top-Down Integration:
	What problems are encountered when top-down integration strategy is chosen?

	Steps for Bottom-Up Integration:
	VALIDATION TESTING
	SYSTEM TESTING
	THE ART OF DEBUGGING
	debugging is the process that results in the removal of the error.

