ANEMIA

less than normal O2 carrying capacity

Hx: specific risk factors (risk of bld loss \rightarrow bld thinners, bruising, menorrhagia), vegan (low iron, B_{12} def), drug Hx, weight loss (Sx of cancer)

Testina:

CBC w WBC & platelet		
RBC indices	Hct (hematocrit) - % bld made of RBCs	
	MCHC (mean cellular Hb concentration) - Hb IvI in RBC, normochromic or hypochromic	
	MCV (mean cellular vol) - vol of RBC, normocytic, macrocytic, microcytic	
	RDW (RBC distribution width) - degree of variation in RBC size, wide or narrow	
reticulocyte count	how well bone marrow compensating	
peripheral smear		
serum ferritin	backstock of iron	
iron-binding capacity	consistently high in iron-def anemia, how many available spaces does bld have for iron	
bone marrow aspiration/biopsy		

IRON DEFICIENCY ANEMIA

most common cause, usually from blood loss, iron metabolism → poorly absorbed (1 in 15 mg, hem-iron (animal product) better absorbed, best absorption w vitamin C in ST), transported by transferrin after absorption, stored as ferritin in LV, bone marrow, SP, amt of circulating ferritin=stored

Etiol	og	У
-------	----	---

	men & postmeno → chronic GI occult blding
	premeno → cumulative menstrual loss
	chronic intravascular hemolysis (autoimmune, mech HT valve malfxn)
inc iron req	pregnancy & lactation
dec iron absorption	gastrectomy, upper small-bowel malabsorption syndromes (celiac)

S/s: fatigue, loss of stamina, SOB, weakness, dizziness, pallor (pale conjunctiva for more melanin), poss tachycardia

Dx: *discontinue iron supp 48 hrs before testing

CBC & RBC indices	late stages, microcytosis & hypochromia
Serum Iron	low in iron def, high in hemolytic disorders
Iron-Building Capacity	increases as levels fall
Serum Ferritin	first sign of iron deficiency

Tx: **rule out blding with occult bld test** \rightarrow oral iron supplementation: liver capsules, floradix (vegetarian), injection if serious (if no response, possible hemorrhage, infexn or cancer)

MEGALOBLASTIC ANEMIAS→

impaired DNA synthesis that make RBCs "look like big babies" - large, immature cells (B₁₂ deficiency & folate deficiency $\textit{PERNICIOUS ANEMIA} \rightarrow B_{12}$ deficiency, B_{12} req for DNA synthesis and maintaining normal neurologic production

Etiology: intrinsic factor deficiency or diet (rare)

Dx: MCV elevated, normal MCHC

S/s: same as iron def + symmetric paresthesias of feet & fingers, spastic ataxia, dementia (neurologic damage is IRREVERSIBLE)

Tx: B₁₂ injection

FOLIC ACID-DEFICIENCY ANEMIA → req for DNA synthesis & RBC maturation

Etiology: dietary lack esp in elderly, alcohol metabolic syndrome, malabsorption (celiac)

S/s: same as pernicious MINUS neuro S/s

ANEMIA OF CHRONIC Dx

chronic inflammation, infexn, cancer

Etiology: sl short RBC survival, impaired erythropoiesis, impaired intracellular iron metabolism

S/s underlying disorder

CBC & Indices microcytic or marginal normocytic anemia

serum iron decreased

iron binding capacity increased

serum ferritin usually decreased

Tx: tx underlying disorder, recombinant erythropoietin & iron supplementation

LEUKEMIA liquid tumor

ACUTE LEUKEMIAS	ALL: most common pediatric cancer (% occur in children) → progn favorable 3-9 y/o, unfavorable in adults, AML: media 31 y/o, long term survival 20-50% Etiology: hematopoietic stem cell is poorly differentiated with abnormal longevity → lymphoid or myeloid S/s: disrupted hematopoiesis (anemia, infection, easy bruising), pallor, fatigue, fever, weight loss, tachycardia, chest Px Dx: CBC & peripheral smear → pancytopenia & peripheral blasts, bone marrow aspiration/biopsy, histochemical studies to distinguish ALL from AML Tx: chemo, cell transplantation, radiation, supportive care (transfusions, hydration, psychological support) Prog: realistic esp in younger, worse in infants/elderly, survival if untreated 3-6 mon
CHRONIC LEUKEMIAS	CLL: most common leukemia in western, increases with age, male sex Etiology: abnormal leukocytes in asymptomatic person, cells better differentiated than in acute → lymphoid or myeloid S/s: insidious onset, fatigue, anorexia, weight loss, dyspnea on exertion, abdom fullness Dx: CBC, peripheral smear, bone marrow asp/biop, immunophenotyping Tx: CLL: NONE until symptoms - cure not possible, CML: imatinib Prog: CLL: 7-10 yrs, CML: 90% w Tx

LYMPHOMA hard tumor in lymph nodes

HODGKIN LYMPHOMA	male>female, age:15-40, 50-60, Reed-Sternberg cells (binucleated cells in lymph nodes), come from B-cells, slow progress, more easily treatable Risk Fctrs: immunosuppression, congenital immunodef, autoimmune Dx, env, Epstein-Barr S/s: Pxless cervical adenopathy, pruritus, fever, night sweats, unintentional wt loss, splenomegaly, hepatomegaly Dx: lymph node biopsy, chest x-ray, CT chest, abdomen, pelvis, CBC, bone marrow biopsy if bones involved Tx: depends on staging → chemo, radiation, surgery, stem cell transplantation Prog: chemo→ 70/80% cure, relapse risk inc w age
NON-HODGKIN LYMPHOMAS	doesn't have Reed-Sternberg cells, collection of different lymph node tumors in bone marrow, SP, LV, GI, not as easily treatable Risk Fctrs: immunodef, immunosup, H pylori, prev Tx for Hodgkin lymphoma Dx: lymph node biopsy Tx: variable depending on cell type Prog: outcomes worse with age

MULTIPLE MYELOMA	tumor in bone, cancer of plasma (B) cells → B-cells make antibodies → too many of monoclonal antibodies (immunoglobulin) usually lgG or lgA → destroys bone tissue, male>female, 65y/o, blacks>whites Risk Fctrs: male, 65+, black S/s: persistent bone Px esp @ night, renal failure, recurring bac infexns, pathologic fractures Dx: Bense Jones proteins found in urine, CBC + peripheral smear - anemia, chem panel - elevated blood protein + hypercalcemia, x-rays - punched out lesions in bone Tx: chemo, corticosteroids, stem cell transpl, Tx of complications Prog: not very good
------------------	---