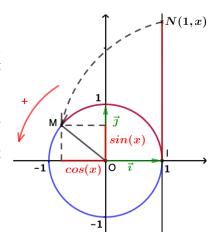
Fonctions trigonométriques

I. Rappels

Dans le plan muni d'un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ et orienté dans le sens direct, on considère un cercle trigonométrique de centre 0. Considérons la droite (d) d'équation x=1. Pour tout nombre réel x, considérons le point N(1,x) de la droite (d). À ce point, en enroulant la droite (d) sur le cercle trigonométrique, on fait correspondre un point M sur le cercle trigonométrique. Autrement dit, Si I désigne le point de coordonnées (1;0), la longueur de l'arc orienté IM égale x: on peut éventuellement faire plusieurs tours du cercle trigonométrique dans un sens ou dans l'autre, si bien que deux valeurs x et x' distinctes correspondent à un même point M sur le cercle trigonométrique. Il suffit pour cela qu'il existe $k \in Z$ tel que



$$x - x = 2k\pi$$

2π étant la longueur (le périmètre) du cercle trigonométrique.

Définitions

- Le cosinus du nombre réel x est l'abscisse de M et on note cos x
- Le **sinus** du nombre réel *x* est l'ordonnée de M et on note *sin x*

De la définition de cosinus et sinus, on tire tout de suite les propriétés suivantes.

Propriété 1

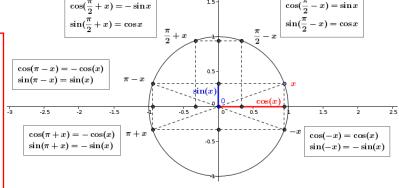
Soit $x \in R$,

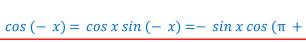
- $-1 \le \cos x \le 1$
- $-1 \le \sin x \le 1$
- $\cos^2 x + \sin^2 x = 1$ (Pythagore)

Et par symétrie

Propriété 2

Soit $x \in R$,





Valeurs remarquables des fonctions sinus et cosinus

x	0	6	4	3	2	
Cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	- 1
Sin x	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Les formules suivantes peuvent aussi être obtenues par construction en exprimant les coordonnées du point M correspondant à x=a+b de 2 manières différentes.

Propriété 3

Soit *a* et *b* deux nombres réels quelconques.

 $\cos \cos (a - b) = \cos a \cdot \cos b + \sin a \cdot \sin b \cos \cos (a + b) = \cos a \cdot \cos b - \sin a \cdot \sin b \sin \sin (a - b) =$

Démonstration

Soient a et b deux nombres réels. Soit (O, \vec{i}, \vec{j}) un repère orthonormé. On note A le point tel que OA = 1 et tel que l'angle $(\vec{i}, \vec{OA}) = a$ On note B le point tel que OB = 1 et tel que l'angle $(\vec{i}, \vec{OB}) = a + b$ On note A' le point tel que OA' = 1 et tel que l'angle $(\vec{i}, \vec{OA'}) = a + \frac{\pi}{2}$ Ainsi,

$$\overrightarrow{OA} = \cos \cos (a) \overrightarrow{i} + \sin \sin (a) \overrightarrow{j}$$

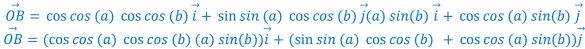
$$\overrightarrow{OB} = \cos \cos (a + b) \overrightarrow{i} + \sin (a + b) \overrightarrow{j}$$

$$\overrightarrow{OA'} = \cos \cos \left(a + \frac{\pi}{2} \right) \overrightarrow{i} + \sin \left(a + \frac{\pi}{2} \right) \overrightarrow{j} = (a) \overrightarrow{i} + \cos \cos (a) \overrightarrow{j}$$

Or, dans le repère orthonormé $(O, \overrightarrow{OA}, \overrightarrow{OA}')$,

$$\vec{OB} = \cos \cos (b) \vec{OA} + \sin(b) \vec{OA}'$$

Donc



Par unicité des coordonnées dans le repère $(0, \vec{i}, \vec{j})$, on obtient bien

 $\cos \cos (a + b) = \cos a \cdot \cos b - \sin a \cdot \sin b \sin \sin (a + b) = \sin a \cdot \cos b + \cos a \cdot \sin b$ On obtient facilement les autres formules en remplaçant b par -b dans ces 2 dernières formules.

Remarque

Ces dernières formules permettent de trouver les formules d'addition et de soustraction de deux cosinus ou de deux sinus. En effet, si l'on soustrait membre à membre les deux premières formules, on obtient

$$\cos \cos (a + b) - \cos \cos (a - b) = -2 \sin \sin a \sin b$$

Posons alors x = a + b

et
$$y = a - b$$

En additionnant membre à membre, on remarque que

$$x + y = 2a \Leftrightarrow a = \frac{x+y}{2}$$

De la même façon, en soustrayant membre à membre, on obtient

$$x - y = 2b \Leftrightarrow b = \frac{x - y}{2}$$

L'égalité ci-dessus s'écrit alors

$$\cos \cos x - \cos \cos y = -2 \sin \sin \left(\frac{x+y}{2}\right) \sin \sin \left(\frac{x-y}{2}\right)$$

De la même manière, on trouve les formules suivantes :

$$\cos \cos x + \cos \cos y = 2 \cos \cos \left(\frac{x+y}{2}\right) \cos \cos \left(\frac{x-y}{2}\right)$$

$$\sin \sin x - \sin \sin y = 2 \cos \cos \left(\frac{x+y}{2}\right) \sin \sin \left(\frac{x-y}{2}\right)$$

$$\sin \sin x + \sin \sin y = 2 \sin \sin \left(\frac{x+y}{2}\right) \cos \cos \left(\frac{x-y}{2}\right)$$

La première formule nous servira pour calculer la dérivée de cosinus.

II. Propriétés des fonctions cosinus et sinus

1. Périodicité

Propriétés

Soient $x \in R$ et $k \in Z$,

- $\cos x = \cos(x + 2k\pi)$
- $\sin x = \sin(x + 2k\pi)$

Démonstration

Aux points de la droite (d) d'ordonnées x et $x + 2k\pi$, on fait correspondre le même point M du cercle trigonométrique.

Remarque

On dit que les fonctions cosinus et sinus sont périodiques de période 2π ou encore $2\pi - p$ ériodiques.

Conséquence

Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur 2π et de la compléter par translation.

Méthode

Résoudre une équation trigonométrique

Vidéo https://youtu.be/PcgvyxU5FCc

Résoudre dans *R* l'équation $x = \frac{1}{2}$

Solution

On pose $X = \cos \cos x$

$$x = \frac{1}{2} \Leftrightarrow X^{2} = \frac{1}{2}$$

$$\Leftrightarrow \left(X = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}\right) \vee \left(X = -\sqrt{\frac{1}{2}} = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}\right)$$

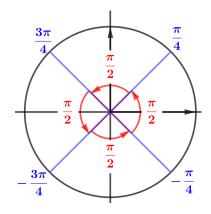
$$\Leftrightarrow \left(\cos \cos x = \frac{\sqrt{2}}{2}\right) \vee \left(\cos \cos x = -\frac{\sqrt{2}}{2}\right)$$

$$\Leftrightarrow \left(x = \frac{\pi}{4}[2\pi]\right) \vee \left(x = -\frac{\pi}{4}[2\pi]\right) \vee \left(x = \frac{3\pi}{4}[2\pi]\right) \vee \left(x = -\frac{3\pi}{4}[2\pi]\right)$$

$$\Leftrightarrow \left(x = \frac{\pi}{4}\left[\frac{\pi}{2}\right]\right)$$

$$\Leftrightarrow \left(x = \frac{\pi}{4}\left[\frac{\pi}{2}\right]\right)$$

$$S = \{k \in \mathbb{Z}\}$$



2. Parité

Propriété

Soit $x \in R$,

$$cos(-x) = cos x$$
 $sin(-x) = -sin x$

Remarque

On dit que la fonction **cosinus** est **paire** et que la fonction **sinus** est **impaire**.

Définitions

Une fonction f est **paire** lorsque pour tout réel x de son ensemble de définition D, -x appartient à D (D est symétrique par rapport à D) et

$$\forall x \in D, f(-x) = f(x)$$

Une fonction f est **impaire** lorsque son ensemble de définition D est symétrique par rapport à 0 et

$$\forall x \in D, f(-x) = -f(x)$$

Conséquences

- Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées.
- Dans un repère orthogonal, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine.

Méthode

Étudier la parité d'une fonction trigonométrique

Vidéo https://youtu.be/hrbgxnCZW_I

Démontrer que la fonction f définie sur R par $f(x) = \sin \sin x - \sin \sin (2x)$ est impaire.

Solution

R est symétrique par rapport à 0.

$$x \in R \Longrightarrow - x \in R$$

 $\forall x \in R, \ f(-x) = \sin \sin (-x) - \sin \sin (-2x) = -\sin \sin x + \sin \sin (2x) = -f(x)$

La fonction f est donc impaire. Sa représentation graphique est symétrique par rapport à l'origine du repère.

III. Dérivabilité et variations

1. Quelques limites

$$f(x) = \frac{\sin x}{x}$$

n'est pas définie en 0 mais admet quand même une limite finie en 0 et égale à 1.

Démontrons d'abord l'inégalité

$$\forall x \in]0; \frac{\pi}{2} [, \cos \cos x \le \frac{\sin \sin x}{x} \le \frac{1}{\cos \cos x}]$$

Soit $x \in]0; \frac{\pi}{2}$ [. Plaçons nous sur le cercle trigonométrique.

Soit le point M d'affixe e^{ix} . Soit A_1 l'aire du triangle OMS.

$$A_1 = \frac{OS \times SM}{2} = \frac{\cos \cos x \sin \sin x}{2}$$

Soit A_2 l'aire du secteur angulaire AOM .

$$A_2 = \frac{x}{2\pi} \underset{Portion du disque}{\checkmark} \times \pi_{\underset{Portion du disque}{Aire du disque trigonométrique}} = \frac{x}{2}$$

Soit A_{3} l'aire du triangle OAT.

$$A_{3} = \frac{OA \times AT}{2} = \frac{1}{2}AT = \frac{1}{2}\frac{AT}{MS} \times MS = \frac{1}{2}\frac{OA}{OS} \times MS = \frac{1}{2}\frac{\sin \sin x}{\cos \cos x}$$

D'après le théorème de Thalès appliqué aux triangles OMS et OTA.

$$AT = \frac{\sin \sin x}{\cos \cos x} = \tan \tan x$$

On remarque alors que, en utilisant le fait que
$$\cos \cos x > 0$$
, $\sin \sin x > 0$ et $x > 0$, $A_1 \le A_2 \le A_3 \Leftrightarrow \cos \cos x \sin \sin x \le x \le \frac{\sin \sin x}{\cos \cos x} \Leftrightarrow \cos \cos x \le \frac{x}{\sin \sin x} \le \frac{1}{\cos \cos x}$

$$Or, \ \frac{1}{\cos\cos x} = \cos\cos x = 1$$

Donc, d'après le théorème des gendarmes, $\frac{\sin \sin x}{x} = 1$

La fonction f étant paire, on en déduit que

$$\frac{\sin \sin x}{x} = \frac{\sin \sin x}{x} = \frac{\sin \sin x}{x} = 1$$

2. Dérivabilité

Théorème

les fonctions cosinus et sinus sont dérivables sur R et soit $x \in R$,

$$cos'(x) = -sin(x)$$
 et $sin'(x) = cos(x)$

Si de plus, la fonction u est dérivable sur $I \subset R$ alors les fonctions f = cos(u) et g = sin sin(u) sont dérivables sur I et on a $\forall x \in I$, $f(x) = -u(x) \sin \sin (u(x))$ et $\forall x \in I$, $g(x) = u(x) \cos \cos (u(x))$

Démonstration

Soit x un nombre réel et h un nombre réel non nul. On utilise la formule démontrée à la fin du paragraphe I.

$$\frac{\cos\cos\left(x+h\right)-\cos\cos x}{h} = \frac{-2\sin\sin\left(\frac{x+h+x}{2}\right)\sin\sin\left(\frac{x+h-x}{2}\right)}{h} = -\sin\sin\left(x + \frac{h}{2}\right) \cdot \frac{\sin\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$$

Posons $H = \frac{h}{2}$

$$\left(\frac{\cos\cos(x+h) - \cos\cos x}{h}\right) = \left(-\sin\sin(x + H) \cdot \frac{\sin\sin(H)}{H}\right) = -\sin\sin x$$

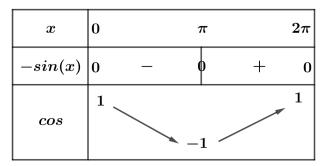
Par produit des limites.

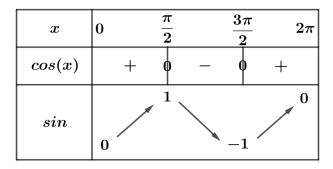
Soit *x* un nombre réel, $\sin \sin x = \cos \cos \left(\frac{\pi}{2} - x\right)$

Donc, par composition des dérivées, $x = \sin \sin \left(\frac{\pi}{2} - x\right) = \cos \cos x$

Les formules des dérivées de f et g découlent directement de la formule de la dérivée d'une fonction composée.

2. Variations

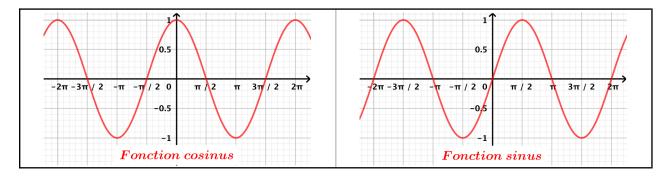




Remarque

On aurait pu tracer le tableau de variations des fonctions cosinus et sinus uniquement sur l'intervalle $[0; \pi]$ car, du fait de la parité de ces fonctions, on aurait retrouvé un intervalle de longueur 2π par symétrie.

3. Représentations graphiques



Méthode

Étudier une fonction trigonométrique

Vidéos dans la playlist

https://www.youtube.com/playlist?list=PLVUDmbpupCappSbh79E9sYg99vU5b_nBy On considère la fonction f définie sur R par

$$f(x) = \cos \cos (2x) - \frac{1}{2}$$

- **1.** Étudier la parité de *f*.
- **2.** Démontrer que la fonction f est périodique de période π .
- **3.** Étudier les variations de f. Représenter graphiquement la fonction f.

Solution

1.
$$x \in R \Longrightarrow - x \in R$$

$$\forall x \in R, \ f(-x) = \cos \cos (-2x) - \frac{1}{2} = \cos \cos (2x) - \frac{1}{2} = f(x)$$

La fonction f est donc paire. Dans un repère orthogonal, sa représentation graphique est donc symétrique par rapport à l'axe des ordonnées.

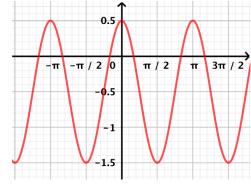
2.
$$x \in R \Longrightarrow x + \pi \in R$$

$$\forall x \in R, \ f(x + \pi) = \cos \cos (2(x + \pi)) - \frac{1}{2} = \cos \cos (2x + 2\pi) - \frac{1}{2} = \cos \cos (2x) - \frac{1}{2} = f(x)$$

On en déduit que la fonction f est π -périodique.

3.
$$\forall x \in R, \ f(x) = -2 \sin \sin (2x)$$

- 7		,		()		
	x	0		$rac{\pi}{2}$		π
	f'(x)	0	_	•	+	0
	f	$\frac{1}{2}$ \		$-\frac{3}{2}$		$\frac{1}{2}$



On obtient le graphique par des translations de vecteur $(\pi \ 0)$ et par symétrie par rapport à l'axe des ordonnées.