
Scheduling and Orchestration Discussion

Mike Spreitzer​
September 16, 2013

Background:
Unified Resource Placement Module -
https://docs.google.com/document/d/1cR3Fw9QPDVnqp4pMSusMwqNuB_6t-t_neFqgXA98-Ls
NovaSchedulerPerspective -
https://docs.google.com/document/d/1_DRv7it_mwalEZzLy5WO92TJcummpmWL4NWsWf0UW
iQ
Scheduler group chat Aug 13 -
http://eavesdrop.openstack.org/meetings/scheduler/2013/scheduler.2013-08-13-15.01.html
Scheduler group chat Sep 3 -
http://eavesdrop.openstack.org/meetings/scheduler/2013/scheduler.2013-09-03-15.02.html
Scheduler session planning for Icehouse -
https://etherpad.openstack.org/IceHouse-Nova-Scheduler-Sessions
Heat Native DSL blueprint - https://blueprints.launchpad.net/heat/+spec/open-api-dsl
Early Proposal for HOT - https://wiki.openstack.org/wiki/Heat/DSL
Another Early Proposal for HOT - https://wiki.openstack.org/wiki/Heat/DSL2
Some Open Questions About HOT - https://etherpad.openstack.org/heat-dsl-questions

Following are some thoughts centered around scheduling and orchestration, based on: my
group’s experience with running code that does holistic infrastructure scheduling then
orchestration, our thoughts about improvements to that code, and initial thoughts about how that
sort of thing could be fitted into the OpenStack architecture. We work closely with a group that
owns code that has an interesting approach to software coordination, they are interested in
contributing it to OpenStack, and that is included in here too.

The OpenStack (nova) scheduler group has been discussing how to add holistic infrastructure
scheduling. By holistic infrastructure scheduling I mean a scheduler that will look at a whole
infrastructure template (AKA pattern AKA topology), including all the relevant types of
resources, and make a joint placement decision. The Unified Resource Placement Module
(u-rpm) proposal has orchestration downstream from holistic scheduling, as does my group’s
running code. By orchestration I mean the issuing of the calls on lower level APIs (with suitable
ordering, and parallelism where possible) to create the infrastructure according to the original
request and the scheduler’s decisions.

When holistic infrastructure scheduling is being done, the input to that scheduling can usefully
include additional kinds of policy and relationship information that is not defined in CFN
templates. Examples include co-location and anti-co-location constraints. There are ways to
include such information --- albeit not in a way that will have any effect on an ordinary CFN
engine --- in valid CFN templates, taking advantage of certain places you can put things that the

https://docs.google.com/document/d/1cR3Fw9QPDVnqp4pMSusMwqNuB_6t-t_neFqgXA98-Ls
https://docs.google.com/document/d/1_DRv7it_mwalEZzLy5WO92TJcummpmWL4NWsWf0UWiQ
https://docs.google.com/document/d/1_DRv7it_mwalEZzLy5WO92TJcummpmWL4NWsWf0UWiQ
http://eavesdrop.openstack.org/meetings/scheduler/2013/scheduler.2013-08-13-15.01.html
http://eavesdrop.openstack.org/meetings/scheduler/2013/scheduler.2013-09-03-15.02.html
https://etherpad.openstack.org/IceHouse-Nova-Scheduler-Sessions
https://blueprints.launchpad.net/heat/+spec/open-api-dsl
https://wiki.openstack.org/wiki/Heat/DSL
https://wiki.openstack.org/wiki/Heat/DSL2
https://etherpad.openstack.org/heat-dsl-questions

CFN engine does not interpret. I call these “I-Specialized” CFN templates (“I” is for
Infrastructure).

A peer group has a software coordination technology that involves no infrastructure-level
dependencies between VMs. Rather, all the software coordination between VMs is handled by
framework facilities as the VMs run their startup scripts (userdata). This framework uses a
coordination service (ZooKeeper, in particular). There are ways to describe software that is to
be coordinated this way in CFN templates, putting information in places that an ordinary CFN
engine ignores. I call such an augmented CFN template “S-Specialized” (“S” is for Software).

We hope that HOT will eventually be a more natural description language.

See https://docs.google.com/drawings/d/1CZcrbhkwUDz5IZFdngbBaEitry25bt9OEpehn2n7skY
for the big picture of how these pieces might fit together. A template that uses the
aforementioned software coordination and infrastructure concepts can be run through a
Software Coordination service that effects the early phases of the software coordination
technology and produces a template that is usable by an engine that knows nothing of this
software coordination technology (a colleague has demonstrated this), provided that the
necessary coordination service is available to the VMs as they start up. That not-S-specialized
but still I-specialized template is input to holistic scheduling, which makes a joint placement
decision and writes it into a plain template (note that OpenStack allows the placement to be
given by the Nova and Cinder clients (more or less; here we require it to be fully true)). The
plain template is then the subject of infrastructure coordination.

See
https://docs.google.com/drawings/d/1o2AcxO-qe2o1CE_g60v769hx9VNUvkUSaHBQITRl_8E
for a picture that zooms in a little on the infrastructure part of the story. My group’s current
running code does not use CFN templates at any stage. The picture shows our planned
improved version that takes I-Specialized CFN templates (as the language for representing a
VRT - Virtual Resource Topology) as input to the holistic scheduler. You see the story is a little
more complicated than appears in the earlier outline. For brevity this picture focuses only on
the sort of request that instantiates or revises a template (they are equivalent here: they assert
the desired topology for a given stack, in Heat terms).

Desired topologies are logged in the VRT log. The holistic scheduler takes a whole topology at
a time and can make a joint placement decision for all the resources in that topology. However,
decisions that do not interact with other decisions can and should be delegated to isolated
schedulers in lower level components. Once the decisions are made for a VRT, the agumented
(by placement decisions) VRT is written into the target state. The target state logically contains
a copy of the original requested topologies; this can be implemented by simply referencing the
originals as they sit in the VRT log --- with suitable constraints on the pruning of that log. The
holistic scheduler judges available capacity by subtracting existing allocations from raw capacity.
The existing allocations that are subtracted come from the scheduler’s effective state, which is

https://docs.google.com/drawings/d/1CZcrbhkwUDz5IZFdngbBaEitry25bt9OEpehn2n7skY
https://docs.google.com/drawings/d/1o2AcxO-qe2o1CE_g60v769hx9VNUvkUSaHBQITRl_8E

the union of the target and observed states. By “union” I mean to not double count a virtual
resource that appears in both states with the same placement.

The infrastructure orchestrator’s job is to use the lower level APIs to change the real state so
that the observed state matches the target state, tracking both target and observed state as
they change.

The observer’s job is to maintain a convenient copy of the real state, called the observed state.
The observed state will, in general, lag that real state. The observed state, and its copy in
effective state, are “soft state”; they can be lost at any time and then reconstructed from the real
state. The observer can use any combination of polling and subscription to get its job done.
Current lower level APIs do not have a way to subscribe to change notifications; that should
change.

	Scheduling and Orchestration Discussion

