CHALLENGE 1a: Micro:bit, blink 1 LED

1. Connect the ground (GND) port on the micro:bit to the ground(-) lead of the LED

2. Connect port 0 to the positive(+) lead on the LED

3. Write code to turn the LED on (1), then pause for 1 second, then turn the LED off (0)
and pause for 1 second.

4. Change the pause time from 1 second (1000 milliseconds) to another value of your
choosing. See how that affects the blinking. Experiment.

Things to consider:

e Computers run code very fast, without the pauses, the board will run the on - off code
so fast, the human eye won’t be able to see so the LED may look off or on even though
it is actually blinking.

e You need a line of code (or block) to tell the board to send electricity to the port (also
called ‘pin’) to turn the LED on. To turn the LED off again, to make it blink, you need a
line of code that stops sending electricity to the pin.

e In computers, there are two ways to read or write information. One is “digital” the other
is “analog”.

o Digital is either ON or OFF, either TRUE or FALSE, either ZERO (0) or ONE (1).
So, a value of 1 is on, a value of 0 is off.
o Analog allows the code to select from a range of values from ZERO (0) to 255.

forever

digital write pin P8 » fo o

e

digital write pin P8 * fo o

pne (o

CHALLENGE 1b: User Input to begin the blinking:

e [f you want the LED to blink ONLY for a certain number of times, you could use a
Repeat Loop block. This will also need an event of some sort to tell it when to begin.
Options for events/user Input:

o When one of the 2 buttons is pressed, when both buttons are pressed
o When the touch-sensitive Logo is touched

o When the board is shaken

o When the board is tilted in a specific direction



o If the level of sound or light is at a certain level

CHALLENGE 1c: Make the LED blink in different patterns, for instance: on for 1
second, off for half a second, on for 2 seconds, off for 100 milliseconds, on for 3 seconds, off
for 3 seconds, etc.. Think about how you could stack a bunch of blocks to make that
happen.
Things to consider:

e The current code to blink is only repeating the SAME short, limited pattern. On, pause,

off, pause, repeat...
e How could you use additional digital write blocks with pause blocks of different values?



CHALLENGE 2: Using a breadboard and male-alligator clip jumper wires
with our blinking LED

1.

Use an alligator-to-male jumper to connect the ground (GND) port on the micro:bit to
the ground(-) RAIL on the breadboard

. Place the LED on the breadboard remembering which is the longer (+) positive lead

and which is the shorter (—) negative/ground lead

Place a jumper in a breadboard hole that is in the SAME ROW as the negative(-)
shorter lead of the LED

Connect an alligator-to male jumper to port 0 and place the male end in a hole in the
SAME ROW as the positive(+) lead on the LED

Test your existing LED Blink code to be sure you have wired your breadboard/LED &
micro:bit correctly.

Things to consider:

By placing a jumper in the negative rail of the breadboard, | can now ground many LEDs or
components, not just one because there is a conductive metal strip that runs along the rail so
any wires placed there are connected to the GND port/pin on the micro:bit.




CHALLENGE 3: Using a breadboard and blinking 2 or 3 LEDs
1. Seeing how the single LED is wired to the breadboard, duplicate the pattern (negative
lead to the ground rail, positive lead to a port/pin on the micro:bit)
2. Write code to blink each LED in a different way.
Things to consider:
Remember what port/pin each LED is connected to and be sure your code for that LED
matches!

on button A * pressed

digital write pin PO w on logo touched =

pause (ms) digital write pin P2 =
digital write pin PO w pause (ms) @

pause (ms) digital write pin P2 =
pause (ms)

on button B * pressed digital write pin P2 »

digital write pin P1 »

digital write pin P1 +

pause (ms) [l



CHALLENGE 4: Connecting a servo motor to a micro:bit and making it
move between 2 positions

1. Connect the GND port/pin to the ground(-) servo wire that is often black or brown.

2. Connect the 3V port/pin on the micro:bit to the positive(+) servo wire that is usually red.

3. Connect port/pin 1 to the servo signal wire,
usually yellow or orange.

4. Next, in Makecode, add the extension code
for the Servo.

5. Decide what ‘event’ will begin the servo
moving. (this example uses the touch-logo)

6. Find the “set servo __angle to 90°” block.

a. Set the pin to match the pin you
connected it to - here it is p1

b. Set the angle to whatever position you
wish to start from. These servos are 0°
to 180°.

7. If the objective is movement, you will now
need a 2nd “set servo __angle to 90°” to
return the servo to the 1st position.

Things to consider:
The position servo needs power to run, (the red
(+) wire) and a small amount of electricity from the
repeat ° times board to tell it what position/degree to stop. This is
the “signal” wire. Just like the LED, a pause is

set servo P1 » angle to @ | needed. This time is needed to allow the servo
' horn (the horn is what spins around) to get from
_ one position to another. The amount of time

set servo P1 v angle to @ 3| needed will depend on the distance, you may

need to experiment to find the time you need.

on logo pressed +

pause (ms) WPl



CHALLENGE 5: Using a breadboard: move servo and blink LED
1. Connect the GND and the 3V ports/pins to the Breadboard to supply power and ground
to multiple components.

a. Connect the ground (GND) port on the micro:bit to the ground(-) RAIL on the
breadboard

b. Connect the 3V port/pin on the micro:bit to the positive(+) RAIL on the
breadboard

2. Connect an LED:

a. Use an alligator-to-male jumper to connect the ground (GND) port on the
micro:bit to the ground(-) RAIL on the breadboard

b. Place the LED on the breadboard remembering which is the longer (+) positive
lead and which is the shorter (-) negative/ground lead

c. Place a jumper in a breadboard hole that is in the SAME ROW as the negative(-)
shorter lead of the LED

d. Connect an alligator-to male jumper to port 0 and place the male end in a hole in
the SAME ROW as the positive(+) lead on the LED

3. Connect a Servo:

a. Place one end of a male-to-male jumper in the hole/pin at the end of the
ground(-) servo wire that is often black or brown, place the other end in the
ground(-) RAIL on the breadboard

b. Place one end of a male-to-male jumper in the hole/pin at the end of the positive
(+) servo wire that is usually red, then place the other end in the positive(+) RAIL
on the breadboard.

c. Using an alligator-to-male jumper, connect port/pin 1 to the servo signal wire,
usually yellow or orange

d. Write code to blink the LED and move
the Servo any way you like.

Things to consider:
Remember w

S




CHALLENGE 6: Using a power-supply on a breadboard - sometimes 3 volts
is just not enough...

VERY CAREFULLY - MATCH the positive, .
and negative before pressing the power

supply module onto the breadboard!!!!

The positive in the RED rail, the negative in the
BLUE rail

00

€€ 440ng

The pins that are spiky thick wires need to match up
with the holes in the bread board, and pressed down
into the holes on the rails of the breadboard. It can
be very tricky so ask for help if you need it!

.@

o

The wires can bend easily so be careful.

|

REMOVE the jumper from the 3V

port/pin on the micro:bit. It is no longer
needed since the power supply module will be
providing the electricity to our components. Plug in your 9v power supply to the extension
cord on the desk, plug the other end into the barrel jack on the power supply module.

£'€ 440 ng
09

Run your servo/LED code again to be sure everything is working!




CHALLENGE 7: Using a breadboard Breakout to access additional ports:

Breakout boards for the micro:bit come in different sizes, shape and configurations, but they
all allow you to connect components to the tiny little ports that are the spaces between
0,1,2,3,3v and GND.

When using breakout boards, be very MINDFUL when connecting to be sure you are placing
your jumpers in the correct breadboard pins that correspond to the labels on the breakout
board. In this example, | am using the ports/pins labeled 0 and 1 for the LED and Servo, and
there are 2 ports for GND - labeled simply with “G”.

NOTE: many of the ports are actually used by the array of LEDs on the face of the board, so
not all 20 labeled ports are actually available to use. (but, if you need extra ports, the LED
array can be turned off!)

As with the power supply module, be careful pressing the pins into the holes on the
breadboard.

Once the breakout board has been placed on your breadboard, re-wire your components
with all male-to-male and connect to the rows that match the label for the port/pins. Test
your existing servo/LED code again. Did you notice anything different?

15k 1920 6 6 3V

3.3V BU =
o A [E]
=)

GND

:.E. Il g
2 iﬁé‘

11 12 13

10

0 1 2 3 4 565k ? &
€€ 440 nG

€9




CHALLENGE 8: Putting it to the test - using an HC-SR04 Ultrasonic
Motion/Distance Sensor:

Extension:
“Sonar”

Use
“If-Then-Else”
checking sensor
input - “is
something
close?” If yes, do
this... if not, do
that?

NOTE:
“trig” sends
(triggers) the G
sound wave
“echo” waits to receive the P R | R

sound wave back after it i echo P1 v <w o
bounces off a surface.

unit inches =

Knowing the speed of
sound - how long it takes to
travel, the code can then
figure out the distance of
whatever the sound
bounced off of.

in background =

You can choose inches or
centimeters. You can also
display the distance value.

else

forever

set servo P8 + angle to @ @

®

ping trig P2 *
show number echo P1 »

unit inches *

pause (ms) QUG






Sure, go ahead, add more stuff!

4
e 8 0 0
»
.
e & & 0 0 0
- 8 0 0 0 0 0 0 0 0 0 0 0 00
o 0 0 0
o 0 0 0

S & &

AE 9 9 02 LTHT ST WTETETTTOT & ¥ &4 9 § h E 2 T O



