

No Board BLE Switch Interface
A switch interface is a device users with disabilities utilize to connect their custom
switches to in order to navigate computers and mobile devices. A switch activation
sends a key command to the connected device. This build provides Bluetooth
connectivity to allow for mobile device (iOS) connection given limitations in the
direct USB connection. The project does not use a PCB board and can be put
together using commercially available parts and 3D printed case.

** This build is geared towards the nontechnical/ novice user and uses the Circuitpython language and
libraries. At the time of publishing (), Circuitpython 6.x is the stable release version. Aug 14, 2021

Materials List
Qty Item

1 Adafruit Feather nRF52840 Express

1 Lipo Battery

4 M2 4mm screws

4 3.5 mm Mono Jack

1 Micro B USB Cable (data)

1 3D Printed Case

1 Latching 12mm push button

Equipment List
Soldering Iron and solder

Wire - solid thread if possible- 2 colors

Wirecutter and stripper

Needlenose pliers

Optional: heat gun and heatsink

Never soldered before? Check out this beginner-friendly how-to video from Adafruit.

Step #1: Connect Each Ground and Input Wire to Jack

Cut (8) 70mm wires using two
different colors if possible.

Hook one end and insert one of
each color into the available
holes on the mono jack.

Solder in place.
Repeat step for each mono jack.

Zero Day Camp (EIN: 81-4645962) is a Brooklyn based computer programming and robotics non-profit working to improve youth critical
media literacy through direct services as well as development of instructional materials and tools. Learn more at https://zeroday.camp

https://www.adafruit.com/product/4062
https://www.adafruit.com/product/1578
https://www.amazon.com/Phillips-Countersunk-Electronic-Accessories-Samsung/dp/B07HC3LQYS/ref=sr_1_8?dchild=1&keywords=M2+screws&qid=1628956812&sr=8-8
https://www.parts-express.com/3.5mm-Mono-Chassis-Jack-090-296
https://www.amazon.com/AmazonBasics-Male-Micro-Cable-Black/dp/B0711PVX6Z/ref=sr_1_5?dchild=1&keywords=usb%2Bcable&qid=1628957120&sr=8-5&th=1
https://www.thingiverse.com/thing:4931534
https://www.amazon.com/OFNMY-Self-Locking-Latching-Button-Switch/dp/B07NX7S9VV/ref=sr_1_1?dchild=1&keywords=OFNMY+18Pcs+12mm+Self-Locking+Latching+Push+Button+Switch+Off-ON+%28DS-428%29&qid=1628957346&s=industrial&sr=1-1
https://youtu.be/JCXGjD0Rpg8
http://nyc.us13.list-manage.com/track/click?u=418dc609f22f7e5f2c870028c&id=7c2ec9dbab&e=8853f45a0c

Step #2: Solder the Ground and Mono jack wires to the board

Cut a 40mm long wire and solder it to the Ground pin on the
feather board.

Solder one of the wires from the mono jack into the board,
repeating each mono jack’s step.

** Be sure to use the same color wire for the input pins and
solder to pins 6 , 9, 10, and 11

Step #3: Insert the mono jacks into the case

Insert the mono jacks into the case and fasten them into place
using the provided rings.

Step #4: Solder wires to the on/ off button

Cut 2 40mm wires using different colors if available.

Hook the ends using needlenose pliers and insert them into
the available hooks on the power button.

Solder the wires into place.

Step #5: Insert the Power Button and Solder the Ground Wires

Insert the button into the available hole in the case and
fasten it into place using the provided ring.

Solder one wire from the button to the board’s EN pin.

Solder the ground wires from the mono jacks and
button to the board’s Ground pin. There should be 5
ground wires.

** Note: if you plan on using a heatsink, insert the
tubing prior to soldering.

Cover the joint with electrical tape if not using a
heatsink.

Step #6: Insert the LiPo Battery and Fasten

Insert the LiPo battery into the holder.

Fasten the board into the available
posts using the 2mm screws.

Step #7: Connect the Board and Flash Circuitpython

Download the needed project files onto your computer and
unzip the folder if needed.

Connect the board to the computer using the USB cable (ensure the
cable is data enabled and not charge only).

Double click the reset button on the board should now appear in
Bootloader mode 'FTHR840BOOT'.

Click and drag the
'adafruit-circuitpython-feather_nrf52840_express-en_US-
6.3.0.uf2' file into the drive.

https://drive.google.com/drive/folders/1BSww2roAQFVaBgJ-NSdc2_Fs2C0wkxtF?usp=sharing

Once flashing is complete, the drive will be labeled 'CIRCUITPY'

Step #8: Click and Drag the Code Files into the Drive

From the downloaded folder in step 7:

Click and drag the 'code.py' file and 'lib' folder into the
'CIRCUITPY' folder.

You may override the existing files within the drive. Your drive
should now have the following folders and file structure (see
image)

Step #9: Connect to the board via the device’s Bluetooth menu and test

When powered on, the board should now be discoverable by your device’s
Bluetooth settings. The name of the device will begin with ‘CIRCUITPY’.

Once the switch interface and device are connected, insert a desired switch
to the mono jack port and test. By default, the following keystrokes are being
sent:

⍜ ⍜ ⍜ ⍜

Left arrow Right arrow Down arrow Up arrow

Step #10: Customize the keycodes being sent

To customize the key codes being sent through the mono jack input, you will need to open and modify the
'code.py' file. Your new code will automatically run after the file is saved.

If you already have a code editor of your choice, you may utilize it. However, if you are a beginner,
downloading and installing the Mu Editor is a good first choice. The Adafruit website provides most of its
Circuitpython tutorials using this editor.

** Note: You may be able to use a standard plain text editor such as Notepad or Text Edit however results are

https://codewith.mu/

not guaranteed.

Code Walkthrough

Imports the needed core libraries. import time​
import board​
from digitalio import DigitalInOut, Direction, Pull

Imports the Bluetooth and
keyboard/ HID (Human Interface
Device) libraries.

import adafruit_ble​
from adafruit_ble.advertising import Advertisement​
from adafruit_ble.advertising.standard import

ProvideServicesAdvertisement​
from adafruit_ble.services.standard.hid import HIDService​
from adafruit_ble.services.standard.device_info import

DeviceInfoService​
from adafruit_hid.keyboard import Keyboard​
from adafruit_hid.keyboard_layout_us import

KeyboardLayoutUS​
from adafruit_hid.keycode import Keycode

Creates 4 buttons and lets them
know which pin on the board they
are connected to.

button_1 = DigitalInOut(board.D11)​
button_2 = DigitalInOut(board.D10)​
button_3 = DigitalInOut(board.D9)​
button_4 = DigitalInOut(board.D6)

Indicates that these pins are an
input (button press).

button_1.direction = Direction.INPUT​
button_2.direction = Direction.INPUT​
button_3.direction = Direction.INPUT​
button_4.direction = Direction.INPUT

This indicates that the buttons are
starting as an Up pull and are
wired to the Ground pin. (Down pull
will be connected through the 3V pin.)

button_1.pull = Pull.UP​
button_2.pull = Pull.UP​
button_3.pull = Pull.UP​
button_4.pull = Pull.UP

Begins a HID instance hid = HIDService()

Starts advertising the board
through a Bluetooth connection.

device_info =

DeviceInfoService(software_revision=adafruit_ble.__version

__, manufacturer="Adafruit Industries")​
advertisement = ProvideServicesAdvertisement(hid)​
advertisement.appearance = 961​
scan_response = Advertisement()​
scan_response.complete_name = "CircuitPython HID"​
​
ble = adafruit_ble.BLERadio()​
if not ble.connected:​
 print("advertising")​

 ble.start_advertising(advertisement, scan_response)​
else:​
 print("already connected")​
 print(ble.connections)

Creates a keyboard instance and
indicates that it is a US layout.

k = Keyboard(hid.devices)​
kl = KeyboardLayoutUS(k)

This is the main loop in the
program and will run from the top
to the bottom repeating itself
forever.

The program scans to see if any
of the buttons has a change in
pull (due to switch activation) and
then sends the corresponding key
press.

There is a 1 second delay inserted
after the key press to prevent
errors. This argument may also be
modified to meet the user’s needs
as an example:

time.sleep(.5)

will increase the speed of key
presses.

To modify the key press being
sent, modify the argument for the
desired button on the appropriate
line. For example:

k.send(Keycode.ENTER)

Here is a list of available key
codes

while True:​
 while not ble.connected:​
 pass​
 print("Start typing:")​
​
 while ble.connected:​
 if not button_1.value:​
 print("up") # for debug in REPL​
 k.send(Keycode.UP_ARROW)​
 time.sleep(1)​
​
 if not button_2.value:​
 print("down") # for debug in REPL​
 k.send(Keycode.DOWN_ARROW)​
 time.sleep(1)​
​
 if not button_3.value:​
 print("right")​
 k.send(Keycode.RIGHT_ARROW)​
 time.sleep(1)​
​
 if not button_4.value:​
 print("left")​
 k.send(Keycode.LEFT_ARROW)​
 time.sleep(1)​
​
 ble.start_advertising(advertisement)

🚨 At the time of this writing, if you would like to use the switch for MacOS and iOS accessibility switch access, you may
not assign any letters or numbers. The OS will not recognize those keycodes as switches. You may however use function
keys (tab, space, enter, etc.) and arrow keys.

Next Steps:

●​ Integrate the mouse navigation library to use the inputs to navigate a mouse cursor. Adafruit’s QTPY for
Mouse Emulation Tutorial.

●​ Integrate the Game Pad navigation library to create a gaming controller.
●​ Integrate the Media Control library to play/pause media, control volume or navigate tracks.
●​ Connect additional pins and mono jacks.
●​ Access the onboard neopixle to provide visual feedback for button presses.

https://circuitpython.readthedocs.io/projects/hid/en/latest/_modules/adafruit_hid/keycode.html
https://circuitpython.readthedocs.io/projects/hid/en/latest/_modules/adafruit_hid/keycode.html
https://learn.adafruit.com/adafruit-qt-py/circuitpython-hid-keyboard-and-mouse
https://learn.adafruit.com/adafruit-qt-py/circuitpython-hid-keyboard-and-mouse

●​ Connect piezo or speaker to provide auditory feedback for button presses.

	No Board BLE Switch Interface
	Materials List
	
	Equipment List
	Step #1: Connect Each Ground and Input Wire to Jack
	Step #2: Solder the Ground and Mono jack wires to the board
	Step #3: Insert the mono jacks into the case
	Step #4: Solder wires to the on/ off button
	Step #5: Insert the Power Button and Solder the Ground Wires
	Step #6: Insert the LiPo Battery and Fasten
	Step #7: Connect the Board and Flash Circuitpython
	Step #8: Click and Drag the Code Files into the Drive
	Step #9: Connect to the board via the device’s Bluetooth menu and test
	Step #10: Customize the keycodes being sent
	Code Walkthrough

	
	Next Steps:

