제주대학교 해양과학대학 지구해양과학과 AI 활용 계획서

1. 학과 현황 분석

1.1 주요 교육 과정

- 지구시스템과학 및 해양과학 통합 교육
- 해양 물리, 화학, 지질, 생물 분야 융합 연구
- 기후변화 및 해양환경 변화 분석
- 해양-대기 상호작용 연구
- 해양 퇴적물 및 고해양학 연구
- 해양 관측 및 데이터 분석 기법
- 해양 지구물리 탐사 및 해석

1.2 현재 문제점

- 광역 해양 관측의 시공간적 한계
- 복잡한 해양-대기 상호작용 분석 어려움
- 장기간 기후 데이터 처리 및 패턴 분석 복잡성
- 해양 환경 변화 예측의 불확실성
- 다중 스케일 해양 현상 통합 분석 한계
- 실시간 해양 재해 예측 시스템 부족

1.3 학생별 현재 학습 과정 및 자동화 대상

해양물리 전공 학생 (18명)

- 현재 학습: 해류, 조석, 파랑 분석, 해양-대기 상호작용
- 자동화 대상:
 - Al 기반 해양 순환 모델링 및 예측
 - 실시간 해양 기상 예보 시스템
 - 해양 에너지 및 물질 순환 분석
 - 극한 해양 현상 예측 및 조기 경보

해양화학 전공 학생 (15명)

- 현재 학습: 해수 화학 성분 분석, 해양 오염, 탄소 순환
- 자동화 대상:
 - 자동화된 해수 화학 분석 및 품질 관리
 - 해양 산성화 모니터링 및 예측
 - 해양 탄소 순환 모델링
 - 해양 오염물질 확산 예측 시스템

해양지질 전공 학생 (12명)

- 현재 학습: 해저 지형, 퇴적물 분석, 고해양학
- 자동화 대상:
 - AI 기반 해저 지형 자동 분석
 - 퇴적물 분류 및 연대 측정 자동화
 - 고해양 환경 복원 및 예측
 - ㅇ 해저 자원 탐사 시스템

기후해양 전공 학생 (10명)

- 현재 학습: 기후변화, 해수면 변화, 극지 해양학
- 자동화 대상:
 - 기후변화 시나리오 자동 생성 및 분석
 - 해수면 상승 예측 모델링
 - ㅇ 극지 해빙 변화 모니터링
 - 기후 변화 영향 평가 시스템

2. AI 자동화 대상 업무별 계획

A. 스마트 해양 관측 및 예측 시스템

현재 문제점

- 해양물리 전공 학생 18명이 제한된 관측 장비로 해양 현상 분석
- 광범위한 해역에 대한 연속적 관측 어려움
- 복잡한 해양 순환 패턴 분석의 한계
- 단기 및 장기 해양 예측의 정확도 부족

AI 자동화 방안

DeepSeek R1 활용:

- 위성 및 부이 관측 데이터 실시간 통합 분석
- 해양 순환 패턴 자동 인식 및 분류
- 다중 스케일 해양 현상 예측 모델
- 해양-대기 결합 예측 시스템
- 극한 해양 현상 조기 경보 시스템

Qwen3 Fine-tuning:

- 제주 주변 해역 해양학적 특성 (쿠로시오, 대마난류) 학습
- 제주 연안 용승, 조석, 파랑 특성 분석
- 동중국해 해양 환경 변화 패턴 학습
- 태풍 경로 및 제주 해역 영향 분석
- 계절별 해양 환경 변화 및 예측 패턴

구현 절차

1. 통합 해양 관측 네트워크 (5개월)

- 1개월차: 관측 인프라 통합
 - 위성 해색, 해수면 온도 데이터 실시간 수집
 - 해양 관측 부이 네트워크 확장 (20개소)
 - 해안 레이더 시스템 구축 (5개소)
 - 자율 수중 글라이더 운영 시스템 (10대)
 - 연안 해양 관측소 자동화 시스템
- 2개월차:실시간 데이터 처리 시스템
 - 다중 센서 데이터 품질 관리 자동화
 - 실시간 데이터 동화 시스템 구축
 - 관측 데이터 공백 지역 보간 알고리즘
 - 이상 데이터 자동 탐지 및 보정
 - 표준화된 데이터 포맷 변환 시스템
- 3개월차: AI 해양 순환 모델
 - 딥러닝 기반 해류 예측 모델 개발
 - 조석 및 폭풍 해일 예측 고도화
 - 해양 와류 및 전선 자동 탐지
 - 수직 혼합 및 층화 구조 분석
 - 해양 난류 특성 자동 분석
- 4개월차: 해양-대기 결합 시스템
 - 해양-대기 열 교환 모델링
 - 증발 및 강수 영향 통합 분석
 - 태풍 강도 변화 예측 시스템
 - 해양 기상 단기 예보 모델
 - 기상청 예보 모델 연동 시스템
- 5개월차: 통합 예측 플랫폼
 - 다중 모델 앙상블 예측 시스템
 - 불확실성 정량화 및 신뢰구간 제시
 - 사용자 맞춤형 예측 정보 제공
 - 해양 재해 조기 경보 시스템
 - 예측 성능 자동 평가 및 개선

학생별 학습 과정 변화

해양물리 전공 학생:

- 기존: 수동 관측 데이터 분석 (주 20시간)
- 변화: AI 모델 개발 및 예측 해석 (주 15시간), 고급 해양 물리 현상 연구에 집중

기대효과

- 해양 예측 정확도 70% 향상
- 관측 데이터 품질 90% 개선

- 해양 재해 조기 경보 시간 80% 단축
- 연구 생산성 60% 증가

B. 해양 화학 자동 분석 및 모니터링 시스템

현재 문제점

- 해양화학 전공 학생 15명이 수동 채수 및 실험실 분석에 의존
- 시료 채취 지점 및 빈도의 제약
- 분석 결과의 정확도 및 재현성 한계
- 해양 오염 및 산성화 모니터링 지연

AI 자동화 방안

자동 해수 분석 시스템:

- 연속 해수 분석기 네트워크 구축
- AI 기반 분석 결과 품질 관리
- 이상 농도 자동 감지 및 알림
- 분석 방법 최적화 및 표준화

해양 오염 및 산성화 예측:

- 오염물질 확산 모델링
- 해양 산성화 진행 예측
- 생태계 영향 평가 시스템
- 완화 및 적응 방안 도출

구현 절차

- 1. 자동 해수 분석 네트워크 (4개월)
 - 1개월차: 자동 분석 장비 구축
 - 연속 해수 분석기 15대 설치
 - 영양염, pH, 용존산소 자동 측정
 - 중금속 및 오염물질 자동 분석
 - 총 유기탄소, 알칼리도 측정 시스템
 - 샘플 자동 채취 및 전처리 장비
 - 2개월차: AI 품질 관리 시스템
 - 분석 결과 이상값 자동 탐지
 - 장비 드리프트 보정 알고리즘
 - 분석 정확도 실시간 모니터링
 - 표준물질 자동 검증 시스템
 - 분석 불확실성 자동 계산
 - 3개월차: 해양 화학 모델링
 - 해수 탄소 시스템 모델링

- 영양염 순환 및 분포 예측
- 해양 산성화 진행 모델
- 오염물질 거동 및 분해 모델
- 생지화학 순환 통합 모델
- 4개월차: 통합 화학 모니터링
 - 실시간 해양 화학 대시보드
 - 화학적 해양 건강도 평가
 - 오염 사고 자동 탐지 시스템
 - 해양 보호구역 수질 관리
 - ㅇ 국제 해양 화학 데이터 공유

학생별 학습 과정 변화

해양화학 전공 학생:

- 기존: 수동 시료 분석 및 실험 (주 18시간)
- 변화: 자동화 시스템 관리 및 해석 (주 13시간), 첨단 해양 화학 연구에 집중

기대효과

- 분석 효율성 80% 향상
- 데이터 신뢰성 95% 달성
- 오염 감지 시간 90% 단축
- 해양 화학 연구 품질 85% 개선

C. 지능형 해저 지형 및 지질 분석 시스템

현재 문제점

- 해양지질 전공 학생 12명이 제한적 해저 탐사 장비 활용
- 해저 지형 매핑의 해상도 및 정확도 한계
- 퇴적물 분석의 주관적 해석 요소
- 고해양 환경 복원의 불확실성

AI 자동화 방안

해저 지형 자동 매핑:

- 멀티빔 음향측심 데이터 자동 처리
- AI 기반 지형 특징 자동 분류
- 해저 지질 구조 3D 모델링
- 해저 사면 안정성 자동 평가

퇴적물 자동 분석:

- 현미경 이미지 기반 입자 자동 분류
- 퇴적 환경 자동 해석 시스템
- 연대 측정 결과 통합 분석
- 고환경 지시자 자동 추출

구현 절차 (4개월)

- 1개월차: 해저 탐사 자동화
 - 자율 수중 로봇 기반 해저 매핑
 - 고해상도 해저 지형 데이터 수집
 - 해저 퇴적물 자동 채취 시스템
 - 수중 카메라 이미지 자동 분석
 - 지구물리 탐사 데이터 통합
- 2개월차: AI 지질 분석 시스템
 - 퇴적물 입자 크기 자동 분석
 - 광물 조성 자동 분류 시스템
 - 유기물 및 화석 자동 식별
 - 퇴적 구조 패턴 인식
 - 지화학 분석 결과 해석 AI
- 3개월차: 고해양 환경 복원
 - 과거 기후 자동 복원 시스템
 - 해수면 변화 역사 재구성
 - 고해류 패턴 복원 모델
 - 생물 생산성 변화 추적
 - ㅇ 극한 기후 사건 탐지
- 4개월차: 통합 지질 정보 시스템
 - 해저 지질도 자동 생성
 - 지질 위험도 평가 시스템
 - ㅇ 해저 자원 잠재성 평가
 - 해안 침식 예측 모델
 - 지질 재해 조기 경보

학생별 학습 과정 변화

해양지질 전공 학생:

- 기존: 수동 퇴적물 분석 및 해석 (주 22시간)
- 변화: AI 지원 지질 해석 및 모델링 (주 16시간), 고급 지구과학 연구에 집중

기대효과

- 해저 매핑 효율성 85% 향상
- 퇴적물 분석 정확도 90% 달성
- 고환경 복원 신뢰도 75% 개선
- 지질 연구 생산성 70% 증가
- D. 기후변화 통합 분석 및 예측 시스템

현재 문제점

- 기후해양 전공 학생 10명이 복잡한 기후 모델 분석 어려움
- 장기간 기후 데이터 처리 및 패턴 분석 복잡성
- 기후변화 시나리오 불확실성 정량화 한계
- 지역 규모 기후 영향 평가 부족

AI 자동화 방안

기후 변화 시나리오 분석:

- 다중 기후 모델 통합 분석
- 지역별 기후 변화 상세화
- 극한 기후 사건 빈도 변화 예측
- 기후 변화 영향 평가 자동화

해수면 상승 정밀 예측:

- 지역별 해수면 변화 예측
- 연안 침수 위험도 평가
- 극지 빙하 융해 영향 분석
- 적응 대책 효과 평가

구현 절차 (3개월)

- 1개월차: 기후 데이터 통합 플랫폼
 - 전지구 기후 모델 데이터 수집
 - 지역 기후 관측 데이터 통합
 - 고해상도 기후 데이터 생산
 - 기후 변화 지표 자동 계산
 - 불확실성 정량화 시스템
- 2개월차: 영향 평가 모델링
 - 생태계 영향 평가 모델
 - 농업 및 수자원 영향 분석
 - 연안 지역 취약성 평가
 - 경제적 피해 추정 모델
 - 사회적 영향 평가 시스템
- 3개월차: 적응 전략 지원 시스템
 - 적응 대책 효과 평가
 - 비용-편익 분석 자동화
 - 정책 시나리오 영향 평가
 - 이해관계자 의사결정 지원
 - 기후 리스크 관리 시스템

학생별 학습 과정 변화

기후해양 전공 학생:

- 기존: 수동 기후 데이터 분석 (주 24시간)
- 변화: AI 기반 기후 모델링 및 정책 분석 (주 18시간), 기후 정책 연구에 집중

기대효과

- 기후 예측 정확도 60% 향상
- 영향 평가 효율성 80% 개선
- 정책 지원 능력 90% 강화
- 국제 기후 연구 기여도 확대

3. 통합 시스템 아키텍처

3.1 기술 스택

- AI 플랫폼: DeepSeek R1 + Fine-tuned Qwen3
- 해양 관측: 위성 + 부이 + AUV + 글라이더
- 데이터 처리: Python + R + MATLAB + CDO
- 모델링: ROMS + WRF + CESM + Custom Al Models
- 클라우드: NOAA Cloud + AWS + Pangeo
- 빅데이터: Apache Spark + Dask + Xarray
- 시각화: Plotly + Leaflet + Cesium + ParaView
- 데이터베이스: PostgreSQL + MongoDB + NetCDF + HDF5

3.2 데이터 통합 및 보안

- 국제 표준: FAIR 데이터 원칙 + CF Convention
- 데이터 공유: GOOS + IODE + World Data Centers
- 품질 관리: UNESCO IOC 품질 관리 절차
- 메타데이터: ISO 19115 + GCMD 표준

4. 도입 일정 및 예산

4.1 단계별 도입 계획

1단계: 해양 관측 및 분석 시스템 (5개월)

- 통합 해양 관측 네트워크
- 실시간 데이터 처리 및 품질 관리
- AI 해양 순환 예측 모델

2단계: 화학 분석 및 지질 시스템 (4개월)

- 자동 해수 화학 분석 네트워크
- 지능형 해저 지형 분석 시스템
- 퇴적물 자동 분석 및 해석

3단계: 기후 분석 및 통합 플랫폼 (3개월)

- 기후변화 통합 분석 시스템
- 전체 시스템 통합 및 최적화
- 국제 데이터 공유 체계 구축

4.2 예상 예산 (총 12개월)

구분 예산 (만원)

해양 관측 장비 60,000

자동 분석 장비 40,000

해저 탐사 장비 35,000

컴퓨팅 인프라 25,000

소프트웨어 개발 30,000

AI 모델 개발 20,000

데이터 시스템 15,000

교육 및 훈련 10,000

운영 및 15,000

유지보수

총 예산 250,000

5. 성과 지표 (KPI)

5.1 정량적 지표

- 해양 예측 정확도: 70% 향상
- 관측 데이터 품질: 90% 개선
- 분석 효율성: **80%** 증가
- 연구 생산성: 75% 향상
- 학습 효과성: 85% 개선
- 취업률: 현재 75% → 목표 90%

5.2 정성적 지표

- 종합적 지구해양과학 연구 역량 강화
- 기후변화 대응 전문가 양성
- 국제 해양과학 연구 경쟁력 확보
- 지속가능한 해양 이용 기술 개발

6. 산학협력 및 지역 연계

6.1 해양과학 연구기관 연계

- 한국해양과학기술원(KIOST) 협력
 - 제주 해역 공동 관측 연구
 - 기후변화 영향 평가 프로젝트
 - 해양 관측 기술 고도화
- 국립기상과학원 협력
 - 해양-대기 결합 예측 모델
 - 태풍 및 해양 기상 연구
 - 기후변화 시나리오 개발

6.2 제주 지역 해양환경 기여

- 제주 연안 환경 모니터링 강화
- 제주 기후변화 적응 전략 수립
- 제주 해양보호구역 과학적 관리
- 제주 해양관광 안전성 향상

7. 향후 발전 계획

7.1 기술 고도화

- 지구시스템 모델 **AI** 가속화
- 위성-해양 통합 관측 시스템
- 해양 디지털 트윈 플랫폼
- 기계학습 기반 기후 예측 혁신

7.2 교육 과정 확장

- 기후변화 과학 전문가 과정
- 해양 빅데이터 분석 전문가 양성
- 국제 해양-기후 연구 협력 프로그램
- 해양과학 정책 전문가 과정

7.3 연구 영역 확대

- 제주 기후변화 연구센터 설립
- 동아시아 해양과학 연구 허브
- IPCC 기여 연구 그룹 참여
- UN 지속가능발전목표 해양 연구

작성일**: 2025**년 **6**월 **25**일

작성기관: 제주대학교 해양과학대학 지구해양과학과