
Mathematical Modeling of Epidemics, from influenza to COVID-19 

Minimum tech requirements: Youtube, Google spreadsheet, Google Colab (Part 2 only) 
 
Optional tech resources used: Any type of statistic or programming language could be used for solving the 
SIR model instead of Colab notebooks. 
 
Objectives/Purpose: 

1.​ Students learn the basics of compartmental modeling in an infectious disease context. 
2.​ Students see the connection between discrete and continuous models. 
3.​ Students learn about the relationship between parameters and model behavior; in particular, students 

learn how the same basic model can be applied to different diseases and/or populations by varying 
parameters. 

4.​ Students are introduced to reading and making small changes to code for simulations in Part 2. 
 

Possible Courses: Calculus I (after limits or during derivatives), Differential Equations 
This module is suitable for Calculus I, to be introduced between limits and derivatives, or as a bridge from 
calculus topics to the start of a differential equations course.  

In a calculus class, I would use the activity from Joanna Wares, “Flattening the curve” at the start of the 
semester when no knowledge of limits or derivatives is assumed. I would tell the students that we will revisit the 
ideas when we know more. We would then complete the following activities at an appropriate point 
mid-semester. Following both activities, I would give students an assignment that calls on them to reflect on the 
growth in their knowledge of mathematical modeling and tools they have learned to use. 

In a differential equations class, I would start the semester with this activity, probably as a precursor to Joanna 
Wares’ “DE Semester Modeling Project that we would work on throughout the remainder of class. 

Preview work for students to complete in advance: 

Read: “How maths can help us fight infectious diseases” (link 
https://theconversation.com/how-maths-can-help-us-fight-infectious-diseases-44848) 

Watch: Introduction to an infectious disease model, part 1 (11 minutes, link https://youtu.be/XWXqXzAYe4E) 

Background​
We divide the population into 3 groups: 

●​ Susceptible individuals who can catch the disease​
 

●​ Infectious individuals who can spread the disease​
 

●​ Removed individuals who have recovered or otherwise developed immunity to the disease (we will 
explore vaccination later) 

We denote  as the number of individuals who are susceptible at time t,  as the number of infectious 

individuals at time t, and  as the number of removed individuals at time t.​
​
We make the following assumptions: 

https://theconversation.com/how-maths-can-help-us-fight-infectious-diseases-44848
https://theconversation.com/how-maths-can-help-us-fight-infectious-diseases-44848
https://youtu.be/XWXqXzAYe4E
https://youtu.be/XWXqXzAYe4E


●​ The number of individuals  in the population is large and constant, so for all time t ​
​
Total population = Susceptible + Infectious + Removed​
​

 ​
​
and there is no birth, death, emigration, or immigration. Individuals move between the 
subpopulations only. It is helpful to think of this as a closed community, like a college dorm.​
 

●​ The population is well mixed. This means we are not considering spatial distribution of people and 
we can picture them as moving around within the space.​
 

●​ There is no incubation period: once you contract the disease, you are immediately infectious. Is this 
always true?​
 

1.​ What are we leaving out in our assumptions? Is it reasonable to assume that all people are equally 
susceptible to a disease? Explain.​
​
 

2.​ What about our assumption regarding an incubation period? Name a disease that DOES have a latency 
period where there is a lag between contact and infectiousness. ​
​
 

Individuals transition from susceptible to infected at transmission rate β (Greek letter beta). If we look at 
this at an individual interaction level, when sick and healthy people interact, there is a probability β that the 
healthy person becomes sick. ​
​
Since we are modeling at the population level, a more precise view is that the rate β = c*x, where c is the 
likelihood of contacts between individuals, and x is the likelihood the contact results in infection.​
​
Individuals transition from infectious to removed at rate γ (Greek letter gamma). This rate is inversely 

proportional to the usual duration of an infection D,   so diseases with longer duration of infection 
have smaller recovery rate. This means that people would remain in the infectious population longer. 

​
Equations of change​

If are the number of susceptibles, infectious, and removed individuals at time t, then to 
find the number of individuals in each group at the next time step t+1 we have: 

, where  is the change in susceptibles in 1 day 𝑆(𝑡 + 1) − 𝑆(𝑡) =  − β · 𝑆(𝑡) · 𝐼(𝑡) 𝑆(𝑡 + 1) − 𝑆(𝑡)



, where  is the change in infecteds in 1 day 𝐼(𝑡 + 1) − 𝐼(𝑡) =  β · 𝑆(𝑡) · 𝐼(𝑡) − γ𝐼(𝑡) 𝐼(𝑡 + 1) − 𝐼(𝑡)

, where  is the change in recovereds in 1 day​𝑅(𝑡 + 1) − 𝑅(𝑡) =  γ𝐼(𝑡) 𝑅(𝑡 + 1) − 𝑅(𝑡)

 

3.​ Notice the signs on the terms. For example, in the equation that describes the change in the susceptible 
population, the term  is negative. In the equation that describes the change in the infectious β∙𝑆 𝑡( )∙𝐼 𝑡( )
population, the term  is positive. Why?​β∙𝑆 𝑡( )∙𝐼 𝑡( )
​
​
 
​
A schematic of this basic SIR model is shown below:​

​
 

In a flipped class (like mine), I would assign the previous two pages as preparatory work to be done outside of 
class as “preview homework” graded for completion. Then we would work through the following portion in 
class, with students completing the exercises in groups. 

Influenza is the disease modeled in this section as a warm-up to COVID-19 in part 2, but these activities can be 
collapsed into one shorter activity by changing the parameters here to be COVID-19 specific or by only 
investigating influenza. I think it is worthwhile to both show students different diseases and allow them to 
“discover” a model of COVID-19 but it is lengthy unless some work is completed out of class. 

Activity 1: A discrete math model of influenza 

1.​ Notice that we are making some simplifying assumptions with our SIR model. For example, we are 
assuming that when you recover from an infection, you are immune to the disease…like chicken pox, for 
example. Is this true for any disease? Give an example of a disease for which infection does NOT give 
immunity: 

​
​
​
 

2.​ We can rearrange our equations of daily change to find the number of people in each group S, I, and R at the 
next time step given our knowledge of the current time step:  ​
 



 

​
We will use these equations to compute 10 days of a influenza epidemic, with the following 
assumptions: 

Assume that the initial populations (at t=0) are  

 𝑆 0( ) = 760

 𝐼 0( ) = 3

 𝑅 0( ) = 0.

This is case data from a British boarding school outbreak. ​

​
​
For influenza, assume the usual duration of infection is D = 2 days and in this setting the transmission 
rate was . β = 0. 00218

a)​ Find the total number of individuals (N) in the population.​
​
 

b)​ Compute the recovery rate .​
​
 

c)​ Use the equations of change to complete a table showing the change in each subpopulation (S, I, R) 
over the first 10 days of a influenza epidemic. ​
​

https://www.shodor.org/succeed-1.0/models/flu/case/index.html#:~:text=In%201978%2C%20a%20study%20was,22%20January%20until%204%20February.


​
For example, the susceptible population at time 1 would be:​
​

​
 

Time (t) 0 1 2 3 4 5 6 7 8 9 10 
S 760           
I 3           
R 0           
 
Computing all of this is prone to errors when done by hand, so I recommend that you make a copy of the 
following spreadsheet and use your results in the sheet to complete the table above and parts e) and f) 
below: https://tinyurl.com/y9rc4duy 
 
Here I would walk students through the spreadsheet. Then I would break them into groups, trying to 
make sure that each group has at least 1 student familiar with spreadsheets. ​
 

d)​ Verify that  each time – this will help you know if your model is working 
correctly!​
 

Use your completed table or the graph generated in the spreadsheet to sketch a very rough graph of S, I, and R 
versus t (all on the same axis). ​
​
​
​
​
​
​
​
Activity 2: Calculus takes us from discrete to continuous 

In Activity 1, we used a discrete model in which we are looking at the rate of change in these populations over 
time steps of one day. However, using calculus, we can take the limit of these discrete rates of change as the 
time step goes to 0. This is called the derivative and denoted as: 

 

https://tinyurl.com/y9rc4duy


So, if we let our time intervals get far smaller than one day – infinitely small, our model becomes the system of 
differential equations below! (Input variable t is not shown on the right-hand side for readability). ​
​

 

1.​ Based on the formula for S’(t) above (the derivative of S(t)), do you expect the population of susceptible 
individuals to increase or decrease? ​
​
​
 

2.​ Based on the formula for R’(t) above, which is the derivative of R(t), do you expect the population of 
removed individuals to increase or decrease? ​
​
​
​
 

3.​ Notice the connection between the equations and the schematic: Individuals leave the susceptible 

group ( ) and join the infectious group ( ). Infectious individuals leave the infectious 

group ( ) and join the removed group as they recover ( ).​

 
4.​ Replace parameters  and  in the general differential equations SIR model above to write the specific β γ

SIR model of influenza in the British boarding school: 
 
 
 
 
 
 
 
The following two activities can be omitted or completed in a different order. 
 
 
 
 



Activity 3: Simulating continuous SIR models of influenza and COVID-19 
This could be done offline as a group project or in class in a group. This requires that at least 1 student in each 
group have a Google account to use Colab notebooks to run and edit the Python code for the SIR model. 
 
The solutions to the SIR differential equation system are the population functions S(t), I(t), and R(t) that we 
would like to see: we want to see how these populations will change over time. We can’t, however, solve these 
equations analytically by hand - we must solve them numerically with a computer. We can use some Python 
code to solve the differential equations for us. 
 
1.​ Each group should have at least one student with a Google account who can share a screen, since it is 

required to use Colab notebooks for Python coding. Go to https://tinyurl.com/yddcj2lg and save a copy of 
the file to your drive, or designate one or more group members for this.​
 

2.​ Complete the section titled “A continuous model of an influenza epidemic” – this just involves reading 
through and gaining some familiarity with the code.​
 

3.​ This could be discussed in groups, with someone designated to report for the group. We will generate a new 
model specific to COVID-19, first assuming that the population remains the same as in the influenza case: 
763 susceptible and 1 infected initially. How do you think the transmission rate  will change for β

COVID-19? Will it be smaller or larger? How do you think , where D is the duration of illness, will 
change? Will it be smaller or larger? ​
​
 

4.​ Return to the Colab notebook and follow instructions for the next section titled “A continuous model of 
COVID-19”. Choose parameters that reflect your thinking in part 3. Sketch or copy and paste your resulting 
plot below:​
​
​
 

5.​ This could be discussed in groups, with someone designated to report for the group. Reflection questions: ​
 

a.​ Do you think your results are reasonable? ​
 

b.​ Where might you look to identify parameters based on data? Did you try to look these up?​
 

c.​ Do you think both parameters might be different in different locations?​
 

d.​ What are some limitations in the SIR model? For example, do you think all members of the 
population are equally susceptible? This could be an opportunity to talk about structured models 
in a DEs course.​
 

The activity could wrap up here or could continue offline as a research project to identify parameters through 
guided research of articles or even data fitting. Alternatively, you can share actual parameters and results that 
you have found for a particular location with your students for closure. 

https://tinyurl.com/yddcj2lg
https://tinyurl.com/yddcj2lg


 
Activity 4: Data fitting 
For a differential equations course, since this module is introductory, you may want to give your students a first 
sense of  parameter estimation that is very low stakes. This activity uses the second tab of the Google 
spreadsheet that contains data for infecteds over the time course of the British boarding school flu outbreak. 
 
An important part of the mathematical modeling process is fitting the model to real data. If the model can 
generate predictions that are close to real data collected over time, this gives us some comfort that it is a good 
predictive model. The connection between the data and the model is in the parameters; ideally the parameters 
will be able to be tweaked until the model output matches the data reasonably closely, and this process is called 
data fitting or parameter estimation. 
 
Here we will get a quick sense of what can be a complex process by attempting to match the model values for 
infected individuals I to real data collected on the number of infected individuals at 14 time points over the 
course of the outbreak, I_data.​
 

1.​ Go to the second tab in the Google “Discrete SIR” worksheet, called “Data Fitting”:  
https://tinyurl.com/y9rc4duy. 

2.​ Notice that the graph now shows only the infected population graph, which is in blue for the model 
output I(t) and red for the data I_data. 

3.​ The goal is to change parameters Beta and Gamma until you get a reasonably good match between the 
model predictions and the data. This can be evaluated visually and by minimizing the Sum of Squared 
Errors (SSE) metric on the sheet. The error at each of the 14 time points when data was collected is the 
difference between the model values and the data values, squared to account for differences in sign. 
After varying both parameters, write down your best estimates:​
​
​
 
Following this activity, groups can share their graphs and parameters, and it may be interesting to 
compare how different parameter combinations can produce similar results. Discussion could touch on 
methods of parameter estimation and on the importance of quantifying uncertainty in model predictions 
and knowing the model limitations given relationships between parameters and output. 

 
 
 

https://tinyurl.com/y9rc4duy

