443/1 - AGRICULTURE PAPER 1 - MARKING SCHEME

1. Olericulture is the growing of vegetables while Pomoculture is the growing of fruits. (Mark as a whole) $(1 \times 2 = 2mks)$ 2. - Has improved soil structure. - Has reduced leaching. - Has improved water holding capacity. - Has increased cation exchange capacity. - Has high micro organisms which increases decomposition of organic mater which decompose to release nutrients. $(4 \times \frac{1}{2} = 2 \text{mks})$ 3. - Facilitates aeration. - Facilitates drainage. - Breaks hard pans / facilitate water infiltration. - Brings up leached nutrients. - Facilitates development of deep rooted crops. - Exposes lower soil layers to weathering. - Exposes soil borne pests and pathogens. - Removes deep rooted weeds. $(4 \times \frac{1}{2} = 2 \text{mks})$ 4. - Centrifugal / Rotar dynamic pump - Reciprocating / piston pump. - Hydram pump - Rotary pump $(4 \times \frac{1}{2} = 2 \text{mks})$ 5. - Rapid growth rate. - Production of abundant foliage. - Rich in plant nutrients / leguminous / rich in nitrogen. - Ability to decay quickly. - Adaptable to wide range of conditions / hardy. $(4 \times \frac{1}{2} = 2 \text{mks})$ 6. - Date of treatment. - Symptoms of disease. - Animals affected. - Drugs which were used. - Cost of treatment. $(4 \times \frac{1}{2} = 2 \text{mks})$ 7. - To obtain seed suitable to ecological conditions. - To obtain pure planting material. - To increase germination percentage. - To remove pests and disease infested planting material. $(4 \times \frac{1}{2} = 2 \text{mks})$ 8. - Watering - Weed control. - Pricking out - Pest control - Disease control $(5 \times \frac{1}{2} = 1\frac{1}{2} \text{mks})$ - Hardening off 9. - Roqueing is the uprooting and destruction of crops that are infested with pests and diseases. Thinning is the uprooting / removal of excess seedlings to allow space for the remaining seedlings. (Mark as a whole) $(1 \times 2 = 2mks)$ 10.

- Damping off
- Black rot

- Downy mildew $(3 \times \frac{1}{2} = 1\frac{1}{2} \text{mks})$

11.

- Altitude should be 0 2100m above sea level.
- Rainfall should range between 760 1300mm per year.
- Temperature should range between 18 29°C

- The soil pH should be between 5.5 - 6.5 (4 x $\frac{1}{2}$ = 2mks)

12.

- High price of commodity.
- Taxation.
- Expected decrease in price of the commodity.
- Advertisement reduction.
- Decrease in population size.
- Reduced income of consumers / inflation.
- Lower tastes and preferences by consumer / reduced fashion of commodity.
- When price of substitute decreases. $(4 \times 1/2 = 2 \text{mks})$

13.

- Protection of trees.
- Pruning.
- Training.

- Grafting old trees. $(4 \times 1/2 = 2 \text{mks})$

14.

- Rotational grazing / controlled grazing.
- Proper stocking rate.
- Conserve excess pasture.
- Timely defoliation.
- Practice zero grazing.

- Graze different classes / species of animals. (4 x ½ = 2mks)

15.

- The name and signature of owner of the land / identification number of owner.
- The size of land.
- The land parcel number.
- Type of owner, if any.
- Seal of issuing officer and signature of issuing officer.
- The date of registration. $(4 \times 1/2 = 2 \text{mks})$

SECTION B

- 16. (a) (i) By planting grass / suitable vegetation.
 - (ii) Channel / trench.
 - (b) Measure ✓ and mark ✓ the layout of drain.
 - Dig and remove ✓ soil from the channel and heap it on the lower ✓ r side of the drain.

 $(4x \frac{1}{2} = 2mks)$

17. (a) H – Gutter (1 x 1 = 1mk) K – Drainage pipe (1 x 1 = 1mk) (b) Let out excess water (1 x 1 = 1mk)

18. (i) X – Loam

Y - Sand

Z - Clay (3 x ½ = 1½mks)

(ii) Soil Y (sandy) (½ mk)

(iii) It has drained the highest amount of water as opposed to others. (1mk)

(iv) Soil Z / Clay soil (1mk)

(v) It is not easily drained / does not loose water easily when flooded for rice production.

19. (i) - Mallow weed / Malva verticillata.

 $(1 \times 1 = 1 \text{mk})$

(ii) - Poisonous / Toxic to livestock.

 $(1 \times 1 = 1 \text{mk})$

- (iii) Mechanical (Acc. any specific method)
 - Biological
 - Cultural (Acc. any specific method)
 - Chemical (Acc. any correct chemical)
 Rej. Legislative.

 $(any 2 x \frac{1}{2} = 1mk)$

(b) Presence of underground storage structures / rhizomes which are difficult to control. (1mk)

20. (a) F – Granular structure

 $(\frac{1}{2}mk)$

G – Platy structure

(½mk)

(b) X – Humus with clay

 $(\frac{1}{2}mk)$

Y – Air space

(½mk)

- (c) Impedes drainage / water infiltration.
 - Prevent root penetration.
 - Influence soil aeration.

(any 2x1 = 2mks)

SECTION C

21. (i) (a) Field preparation

- The field should be cultivated to a fine tilth.
- Construct / repair bund around the field.
- Flood the field 4 days after transplanting.
- Flood the field up to 10cm above the surface.
- Puddle the soil to the required tilth / rotavate the soil.
- Level the field by dragging a board to obtain level seedbed.
- Construct inlet and outlet.

 $(5 \times 1 = 5 \text{mks})$

(b) Water control

- Increase water level from 5cm to 15cm.
- Water is increased gradually.
- Allow water to flow slowly through the fields / allow fresh water at 2-3 weeks interval.

 $(3 \times 1 = 3 \text{mks})$

(c) Field management

- Control weeds by uprooting / use of appropriate herbicide
- Control birds by scaring or by destroying breeding colonies.
- Water should be changed every 2 3 weeks / let water flow slowly through the field.
- Drain water 3 weeks before harvesting / when heads turn down.
- Maintain level of water at ¹/₃ height of plants until 3 weeks before harvesting.
- Top dress with sulphate of ammonia at 250kg/ha in two portions.
- Top dress just before transplanting and after 40 days.
- Control diseases i.e. Anthracnose by growing resistant varieties, use clean seeds. Or bacteria blight uprooting and destroying infected plants or spray with colliar oxychloride. (5x1 = 5mks)

(ii) (a) Pyrethrum

- Picked flowers are put into open woven baskets to allow proper ventilation.
- Only dry flowers are picked to avoid fermentation and heating up.
- Flowers are not compacted in the basket to avoid heating up and fermentation.

(3x1 = 3mks)

(b) Tea

- Tea leaves are not compressed in a basket.
- Harvested tea leaves are kept cool under a shade as harvesting continues.
- Tea leaves are delivered to the factory on the same day after harvesting. (1x3 = 3mks)
- 22. (a) Consumable goods inventory records.
 - Permanent goods inventory records.

 $(2 \times \frac{1}{2} = 1 \text{mk})$

(b)

- -__Helps in decision making
- ___Enables the farmers to predict future returns.
- -___Helps farmer to avoid incurring losses by investing in less profitable enterprises.
- ____It ensures a periodic analysis of the farm business.
- ____It acts as a record which can be used for future reference.
- ____It pin points efficiency or weakness in farm operations.
- Enables farmers to secure loans from financial institutions.

 $(6 \times 1 = 6 \text{mks})$

(c)

KIPSINENDE FARM BALANCE SHEET AS AT 01 – 06 – 2011 ✓

Liabilities√	Shs√	cts	Assets√	shs	cts
Current Liabilities			Current Assets		
Farm inputs purchased on credit	19800	00√	Cash at hand	5000	00
Wages	5600	00√	Cash in the bank	20000	004
Taxes payable	750	00√	Broilers	30000	004
	26150	00	Maize in store	7000	00√
Long-term liabilities			Calves	15000	00√
Bank loan	213000	00√	Dairy cattle	120000	00
Interest payable	2000	00√	Eggs sales on credit	10000	00√
	215000	00	Milk sales on credit	13000	001
			Vegetables sales on credit	5000	00√
Total Liabilities	241150	00√		225000	00
Networth	353850	004	Fixed Assets		
			Buildings	75000	001
			Machinery	95000	00√
			Land	200000	001
				370000	00
Total	595000	00√	Total	595000	00√

√ = ½

Total marks =13mark

(½ x 26)

23. (a)

- Stage I Filtration at the water intake.
 - Water is made to pass through series of sieves so that large particles are trapped.
- Stage II Softening of water
 - Water is mixed with soda ash (NAHCO₂) in small tank to soften it.
- Stage III Coagulation and sedimentation
 - Allum is added to water to facilitate coagulation and sedimentation.
 - Water stays in the tank for 36 hours to kill bilharzias.
 - Tanks open to remove bad small / odour and for aeration.

Stage IV – Filtration

- Water passes through filtration tank where all remains solid particles removed.

• Stage V – Chlorination

- Water enters chlorination tank where chlorine is added to kill germs.

Stage VI – Storage

- Treated water is stored in large tanks before distribution.

(stage mentioned – 1mk, explanation – 1mk) (6 x 2 = 12mks)

(b)

- (i) Nature of soil e.g. sandy soils are easily eroded whereas clay is resistant to erosion.
- (ii) Shape of the land the steeper the shape of the land the higher the erosivity.
- (iii) Rainfall intensity the higher the intensity of rain the higher the erosion.
- (iv) Rainfall amount the higher the amount of rainfall the higher the erosion.
- (v) Strength of wind the stronger the wind the higher the erosive power.
- (vi) Bareness of the land bare land are prone to erosion.

(5 explained points) $(5 \times 1 = 5 \text{mks})$ NB: No mark for just stating.

(c)

- One type of nutrient is used leading to its exhaustion.
- Nutrient is used from a certain zone where roots can reach.
- Leads to build up of certain pests and diseases. (3 x 1 = 3mks)