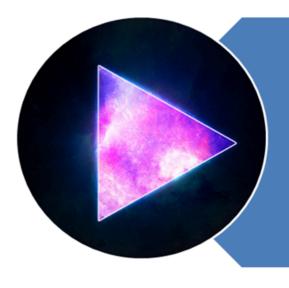
Работу выполнили учащиеся 1 группы 2014-2015 учебный год

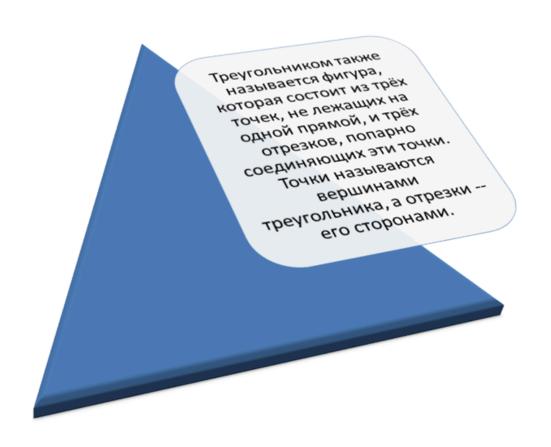
Tpeyzonbhuk

Содержание справочника : ^)

- ♦ Основная часть
 - > Определения треугольника
 - ➤ Виды
 - равнобедренный
 - равносторонний
 - остроугольный
 - прямоугольный
 - тупоугольный
 - > Основные линии
 - медиана
 - биссектриса
 - высота
 - средняя линия
 - серединный перпендикуляр
 - > Окружность
 - вписанная
 - описанная
 - Формулы и соотношения
 - признаки равенства
 - признаки подобия
 - теорема Пифагора
 - синус
 - косинус
 - тангенс
 - котангенс
 - формулы площадей
 - произвольный треугольник
 - прямоугольный треугольник
 - равносторонний треугольник
- Дополнительная часть
 - > среднее пропорциональное
 - > теорема Чевы
 - > теорема Менелая
 - ОТТ (основное тригонометрическое тождество)
 - > табличные значения синусов, косинусов и тангенсов



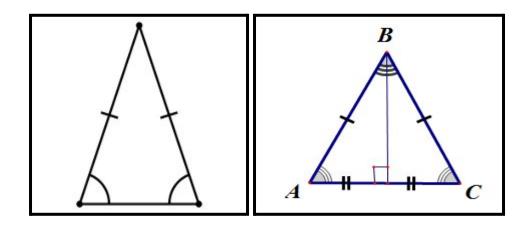
геометрическая фигура, образованная тремя пересекающимися прямыми, образующими три внутренних угла.



Виды треугольников

Равнобедренный треугольник

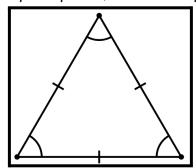
Треугольник, у которого две стороны равны, называется равнобедренным



Теорема №1: В равнобедренном треугольнике углы при основании равны Теорема№2:В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой

Равносторонний треугольник

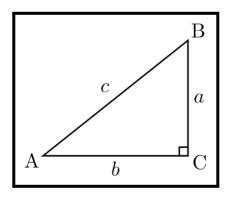
Треугольник, у которого все стороны равны, называется равносторонним(правильным)



Остроугольный треугольник

Треугольник называется остроугольным, если все три его угла — острые, то есть меньше 90°.

Прямоугольный треугольник



это треугольник, в котором один угол прямой (то есть равен 90 градусам).

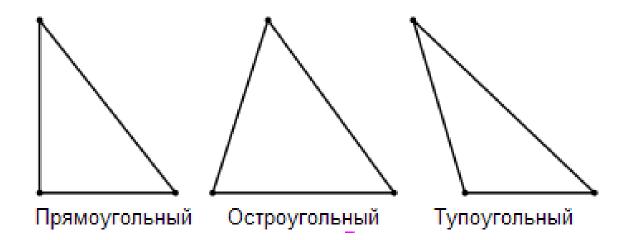
c-гипотенуза (лежит напротив прямого угла); a,b- катепы

Свойства прямоугольного треугольника

- 1. Сумма острых углов прямоугольного треугольника = 90°
- 2. Катит прямоугольного треугольника, лежащий напротив угла **30°** = половине гипотенузы

Тупоугольный треугольник

Треугольник называется тупоугольным, если один из его углов — тупой, то есть больше 90°.



Основные линии

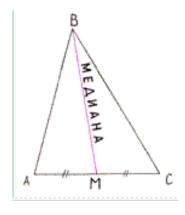
треугольника

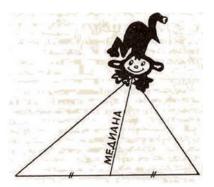
Meduaria

— это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника:

- 1. Медиана разбивает треугольник на два треугольника одинаковой площади.
- 2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром масс, центром тяжести либо центроидом треугольника.
- 3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.





Формула медианы: $m_a = \frac{1}{2} \sqrt{\left(2b^2 + 2c^2 - a^2\right)}$

Медиана-обезьяна, У которой зоркий глаз, Прыгнет точно в середину Стороны против вершины, Где находится сейчас:)

*Bucceis*mpuca

— это луч, который исходит из его вершины угла, проходит между его сторонами и делит данный угол пополам.

Биссектрисой преугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрис треугольника:

- 1. Каждая точка биссектрисы не развернутого угла равноудалена от его сторон. А также, если каждая точка не развернутого угла равноудалена от его сторон, то она лежит на биссектрисе этого угла.
- **2.** Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
- 3. Биссектрисы треугольника пересекаются в одной точке.

Формула биссектрисы: $\beta_b = \frac{\sqrt{ab(a+b+c)(a+c-b)}}{a+c}$

Биссектриса- это крыса, Которая бегает по углам И делит угол пополам:)

Высота

— это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.

Свойства высоттреугольника:

- **1.** Высоты треугольника пересекаются в одной точке, называемой ортоцентром. В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном вне треугольника; в прямоугольном в вершине прямого угла.
- 2. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

Высота

Похожа на кота,
Который, выгнув спину,
И под прямым углом
Соединит вершину
И сторону хвостом:)

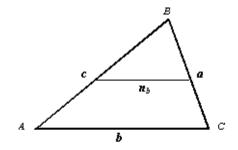
Средняя линия

это отрезок, соединяющий середины двух сторон треугольника.

Свойство средней линии треугольника:

- 1. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны
- 2. Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного

Формула средней линии: $n_{b}=\frac{1}{2}b$



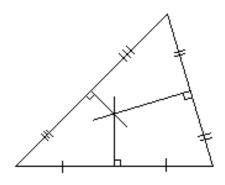
Серединный

перпендикуляр

это прямая, проходящая через середину отрезка перпендикулярно к нему

Свойство серединного перпендикуляра треугольника:

1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.



Вписанная в треугольник окруженость

Окружность называется вписанной в треугольник, если все стороны треугольника касаются этой окружности, а треугольник называют описанным.

В любой преугольник можно вписать окружность и притом полько одну.

Центр вписанной окружности - точка пересечения биссектрис треугольника.

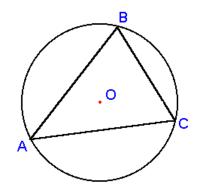
Опшсанная около треугольника окруженость

Окружность называется описанной около треугольника, если все его вершины лежат на окружности. А треугольник называется вписанным.

Около любого треугольника можно описать окружность и притом только одну.

Центр описанной окружности- точка пересечения серединных перпендикуляров.

Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы

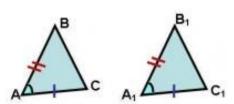


Центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник- правильный.

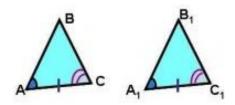
Формулы и соотношения:)

Признаки равенства треугольников

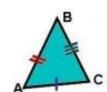
1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

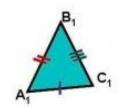


2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.



3. Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.





Признаки равенства прямоугольных треугольников

1. По двум катетам

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.

2. По катету и прилежащему к нему острому углу

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны

3. По катету и противолежащему острому углу

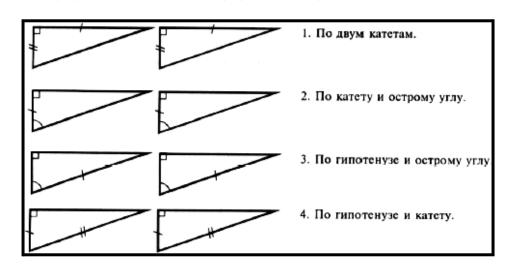
Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащий острому углу другого прямоугольного треугольника, то такие треугольники равны.

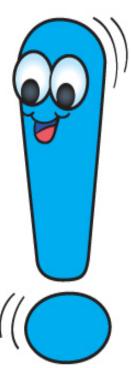
4. По гипотенузе и острому углу

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.

5. По гипотенузе и катету

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

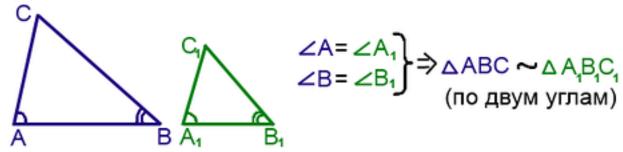




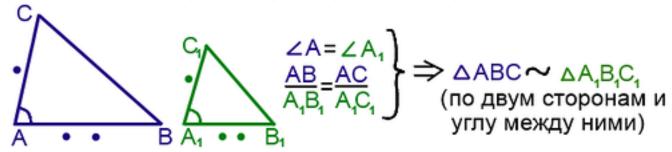
Mpushaku nodobusi

MPEYZOALHUKOB

1. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.



2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.



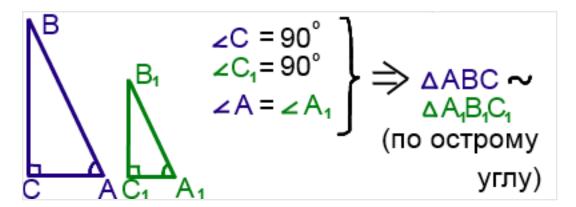
3. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

$$AB = AC = BC \Rightarrow \triangle ABC \sim \triangle A_1B_1C_1$$

(по трем сторонам)

Признак подобия прямоугольных треугольников :)

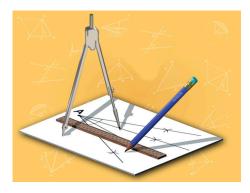
Для подобия прямоугольных треугольников достаточно, чтобы у них было по одному острому углу.



Свойства площадей подобных треугольников:

- 1. Отношения площадей подобных треугольников равно квадрату коэф фициента подобия.
- 2. Если два треугольника имеют равные углы, то их площади относятся как произведения сторон, заключающих эти углы.
- 3. Отношение периметров и длин биссектрис, медиан, высот и серединных перпендикуляров равно коэф фициенту подобия.

Teopema Mugbazopa



В прямоугольном преугольнике квадрат гипопенузы равен сумме квадратов капетов

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник- прямоугольный.

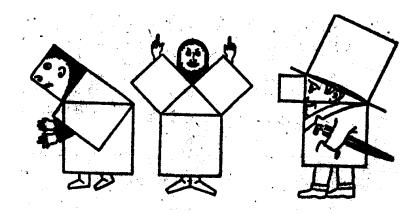
Пифагоровы тройки чисел-

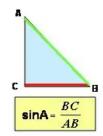
Примеры: (11,60,61); (15,8,18); (35,12,37)

Свойства:

1. Пифагоровы тройки чисел образуются из чисел кратных 3,4,5

2. Если один катет- четный, второй- нечетный, то гипотенуза - нечетная, если один катет- четный, второй- четный, гипотенуза- четная

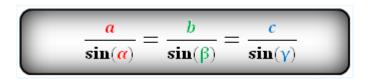


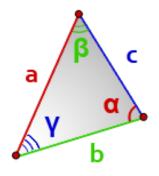


Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе

Teopena cunycos

Стороны треугольника пропорциональны синусам противолежащих углов





Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Teopena kocunycos

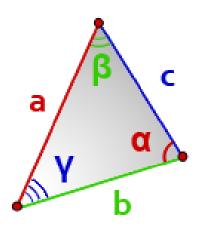
- а, b, c- стороны треугольника
- α , β , γ углы треугольника

$$a^2 = b^2 + c^2 - 2bc \cdot cos(\alpha)$$

$$b^2 = \frac{a^2}{a^2} + c^2 - 2ac \cdot cos(\beta)$$

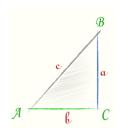
$$c^2 = a^2 + b^2 - 2ab \cdot cos(\gamma)$$

 $\cos \alpha = \sin \beta$



 $tgA = \frac{BC}{AC}$

Тангенсом острого угла прямоугольного преугольника называется отношение противолежащего к прилежащему катепу.



$$tg\alpha=ctg\beta$$

Коп α нгенс угла ctg(A) — есть отношение прилежащего катета к противолежащему катету

$$\operatorname{ctg}(A) = \frac{b}{a}$$

Формулы площади треугольника :)

Для произвольного треугольника:

- 1. $S = \frac{1}{2} a h$ (где ϕ -основание треугольника, h-вы сота проведенная к основанию)
- 2. $S = \frac{1}{2} *a *b *sin \phi$ (где S-площадь треугольника; a,b-стороны треугольника; ϕ -угол между сторонами a,b)
- **3. S=** $\sqrt{p(p-a)(p-b)(p-c)}$ (где а,b,c-стороны треугольника;p-полу-периметр)
- 4. **S= (a*b*c)/4R** (где а,b,c-стороны треугольника; R- радиус описанной окружности)
- **5. S=p*r** (где r-радиус вписанной окружности; p- полу-периметр треугольника)
- 6. $S=2*R^2sin\phi*sin\beta*siny$ (где R- радиус описанной окружности; ϕ, β, y углы треугольника)

Для прямоугольного треугольника:

 $S = \frac{1}{2}ab$ (где a,b-катеты треугольника)

Для равностороннего треугольника:

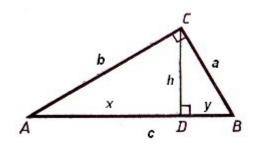
$$S = \frac{\alpha^2 \sqrt{3}}{4}$$

Дополнительно

Среднее пропорциональное

Отрезок "у" называется средним пропорциональным (средним геометрическим) для отрезков d и k, если

- \star z= \sqrt{dk}
- ❖ Высота прямоугольного треугольника, проведенная из вершины прямого угла, делит треугольник на 2прямоугольных треугольника, каждый из которых подобен второму и данному треугольнику.



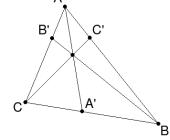
Катет прямоугольного треугольника- это среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключенного между катетом и высотой, проведенной из вершины прямого угла. $a=\sqrt{cy}$ $b=\sqrt{cx}$

Высота прямоугольного треугольника, проведенная из вершины прямого угла, - это среднее пропорциональное для отрезков, на которые гипотенуза делится этой высотой.

$$h = \sqrt{ab}$$
 $h = \frac{ab}{c}$

Теорема Чевы

Пусть точки A_1, B_1, C_1 лежат на сторонах BC, AC и AB треугольника ABC соответственно. Пусть отрезки AA_1, BB_1 и CC_1 пересекаются в одной точке. Тогда



$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1$$

Пусть точки A_1, B_1, C_1 лежат на сторонах BC, AC и AB треугольника ABC соответственно. Пусть выполняется соотношение

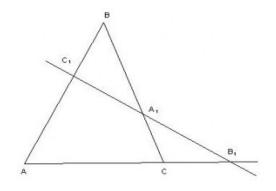
$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1.$$

Тогда отрезки AA_1, BB_1 и CC_1 пересекаются в одной точке.

Теорема Менелая

• Пусть прямая пересекает треугольник ABC, причем C_1 - точка ее пересечения со стороной AB, A_1 - точка ее пересечения со стороной BC, и B_1 - точка ее пересечения с продолжением стороны AC. Тогда

$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1.$$



• Пусть дан треугольник ABC. Пусть точка C_1 лежит на стороне AB, точка A_1 - на стороне BC, а точка B_1 - на продолжении стороны AC, причем выполняется соотношение

$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1.$$

Тогда точки A_1, B_1 и C_1 лежат на одной прямой.

Основное пригонометрическое пождество

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
.

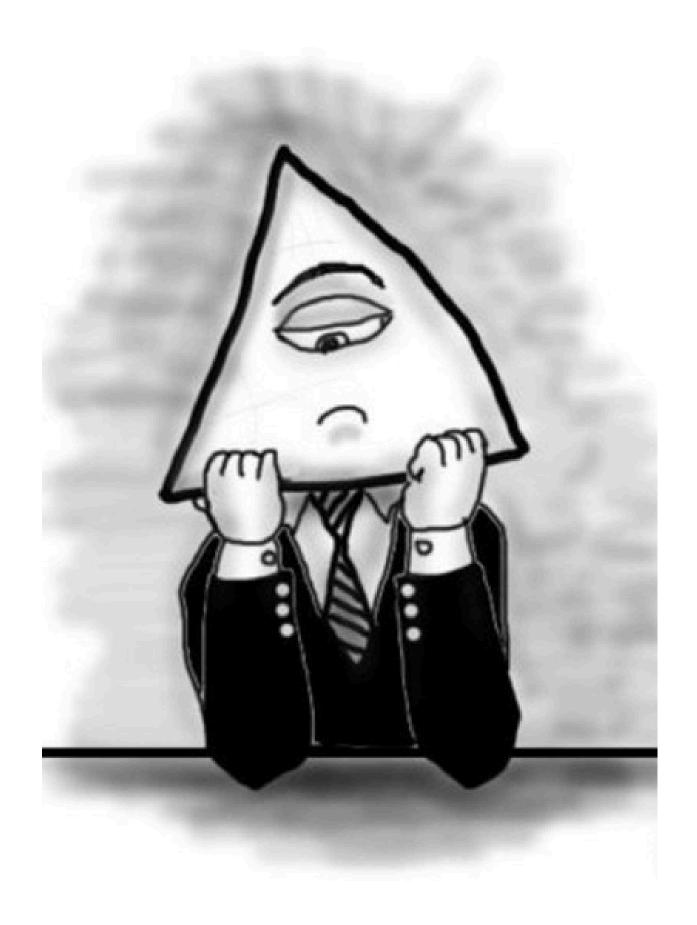
Табличные значения

sin,

COS,

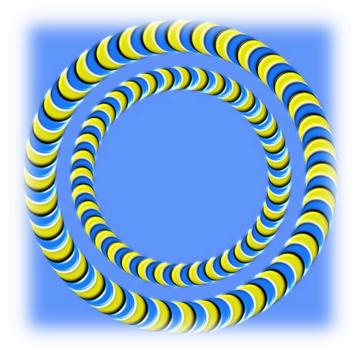
tg.

α	30 ⁰	45 ⁰	60 ⁰	90 ⁰	120 ⁰	135 ⁰	150 ⁰
sin α	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
cosα	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
tgα	$\frac{1}{\sqrt{3}}$	1	√3	ı	- √3	-1	$-\frac{1}{\sqrt{3}}$



Спасибо за внимание. :)

❖ Будем рады учесть ваши советы и пожелания(КРИТИКА):



> ATAKA

1. Проекции c1,c2 соответственно катетов a,b на гипотенузу, обладают следующими свойствами

$$h = \sqrt{c_1 c_2}, \quad a = \sqrt{c c_1}, \quad b = \sqrt{c c_2}, \quad h = \frac{ab}{c} = \frac{a+b}{a_c + b_c}.$$

